

# SCARA 机器人使用手册

V103

南京埃斯顿自动化股份有限公司南京埃斯顿机器人工程有限公司

本文档符合 ISO 体系要求, 并会根据 IPD 体系变化更新 (IPD-DEV-T06 V1.0 2011-9-2)

## 感谢您使用埃斯顿机器人产品。

在使用机器人之前,务必仔细阅读机器人安全使用须知,并在理解该内容的基础上使用机器人。本公司致力于不断提升产品品质,本手册中与产品有关的规格和信息如有改动,恕不另行通知。

本手册中所有陈述、信息和建议均已经过慎重处理,但不保证完全正确。本公司对于因使用本手册而造成的直接或间接损失不负任何责任。

用户必须对其应用任何产品负全部责任,须谨慎使用本手册及产品。

本手册所有内容的解释权属南京埃斯顿机器人工程有限公司。

本手册未对任何一方授权许可,不得以任何方式复制和拷贝其中的全部或部分内容。版权所有:南京埃斯顿机器人工程有限公司@2018, All Rights Reserved Copyright

#### 产品服务热线: 400-025-3336

地址:南京市江宁经济开发区吉印大道 1888 号 邮编: 211102

电话: 025-85097068

公司主页: www.estun.com 电子邮箱: robot@estun.com



# 前言

请务必确保本使用说明书到达本产品的最终使用者手中。 本手册针对控制器版本为 2.4.2!

相关说明书一览

ESTUN 机器人 SCARA 系列机械使用维护手册 ESTUN 机器人 控制柜使用维护手册

操作手册根据用途不同内容有异,请确认与用途是否相同。

### 安全注意事项

使用(安装、运转、保养、检修)前,请务必熟读并全部掌握本说明书和其他附属资料,在熟知全部设备知识、安全知识及注意事项后再开始使用。

本说明书中的安全注意事项分为"危险"、"注意"、"强制"、"禁止"四类分别记载。"INFO"为提醒事项或使用建议。

| 图形符号          | 含义                            |
|---------------|-------------------------------|
| <u></u><br>危险 | 误操作时有危险,可能发生人身伤害或死亡设备损坏等严重事故。 |
| 注意            | 误操作时有危险,可能发生中等程度伤害、轻伤事故或物件损坏。 |
| 强制            | 必须遵守的事项。                      |
| 禁止            | 禁止的事项。                        |
| INFO          | 提醒的事项或使用建议。                   |

即使是属于"注意"类的事项,也会因情况不同而产生严重后果,故任何一条"注意"事项都极为重要,请务必严格遵守。



虽然不符合"注意"或"危险"的内容,但为了确保安全和有效的操作,用户也必须遵守的事项,将会在相关处加以叙述。



本说明书对机器人的示教、再现、程序及文件编辑操作、作业管理等内容进行了全面的说明。请务必在认真阅读并充分理解的基础上操作机器人。

另外,有关安全的一般事项,在《ER系列机器人使用说明书》的"1.1保障安全"中有详细描述,阅读本说明书前请务必熟读,以确保正确使用。







- 说明书中的图解,有的为了说明细节取下盖子或安全罩进行绘制,运转此类部件时, 务必按规定将盖子或安全罩还原后,再按说明书要求运转。
- 说明书中的图及照片为代表性示例,可能与所购买产品不同。



- 说明书有时由于产品改进、规格变更及说明书自身更便于使用等原因而进行适当的修改,将不另行通知,若需最新版本资料,请关注我公司网站或与我公司服务部联系。
- 未经我公司同意,不得随意增加或删除部分或全部内容,不允许将该手册部分或全部内容用于第三方的设计。
- 由于破损、丢失等原因需订购说明书时,请关注我公司网站或与我公司服务部联系。
- 客户擅自进行产品改造,不在本公司保修范围之内,由此引起的直接或间接损失, 本公司概不负责。
- 操作机器人前,按下机器人控制柜前门及示教编程器上的急停键,并确认伺服电源 被切断。伺服紧急情况下,若不能及时制动机器人,则可能引发人身伤害或设备损坏事故。



急停键

解除急停后再接通伺服电源时,要解除造成急停的事故后再接通伺服电源。由于误操作造成的机器人动作,可能引发人身伤害事故。





#### 急停状态解除

- 在机器人动作范围内示教时,请遵守以下事项。由于误操作造成的机器人动作,可能引发人身伤害事故。
  - 保持从正面观看机器人。
  - 遵守操作步骤。
  - 考虑机器人突然向自己所处方位运动时的应变方案。
  - 确保设置躲避场所,以防万一。
- 进行以下作业时,请确认机器人的动作范围内没人,并且操作者处于安全位置操作:
  - 机器人控制柜接通电源时。
  - 用示教编程器操作机器人时。
  - 试运行时。
  - 自动再现时。
- 不慎进入机器人动作范围内或与机器人发生接触,都有可能引发人身伤害事故。另外,发生异常时,请立即按下急停键。急停键位于电柜及示教编程器的右侧。





- 进行机器人示教作业前要检查以下事项,有异常则应及时修理或采取其他必要措施。
  - 机器人动作有无异常。
- 注意

- 外部电线遮盖物及外包装有无破损。

- 示教编程器用完后须放回原处。如不慎将示教编程器放在机器人、夹具或地上,当机器人运动时,示教编程器可能与机器人或夹具发生碰撞,从而引发人身伤害或设备损坏事故。
- 在理解SCARA系列机器人使用说明书的"警告标志"的基础上,使用机器人。

## 本书常用词汇定义

"ESTUN ROBOTICS"是埃斯顿工业机器人的商品名。

ESTUN ROBOTICS 由机器人本体"机器人"、机器人"控制柜"、"示教编程器"和"供电电缆"构成。

在本书中,这些部分如下表表示。

| 设备           | 本书表示法 |
|--------------|-------|
| ER系列机器人电气控制柜 | 控制柜   |
| ER系列示教编程器    | 示教编程器 |
| 机器人与控制柜间的电缆  | 供电电缆  |







# **CONTENTS**

| 前言 | i    |             |                                       | i  |
|----|------|-------------|---------------------------------------|----|
| 目词 | 麦    |             |                                       | 1  |
| 安装 | 支说明  |             |                                       |    |
| 1. | 安全   |             |                                       | 1  |
|    | 1.1. | 保障          | 每全                                    |    |
|    | 1.2. | 专门          | ]培训                                   |    |
|    | 1.3. | 机器          | · · · · · · · · · · · · · · · · · · · | 2  |
|    | 1.4. | 操作          | 三人员安全注意事项                             | 2  |
|    | 1.5. | 机器          | · 人的安全注意事项                            | 2  |
|    | 1.5. | 1.          | 安装及配线安全                               | 2  |
|    | 1.5. | 2.          | 作业区安全                                 | 3  |
|    | 1.5. | 3.          | 操作安全                                  | 3  |
|    | 1.6. | 移动          | 力及转让机器人的注意事项                          | 4  |
|    | 1.7. | 废弃          | 5机器人的注意事项                             | 5  |
| 2. | 产品确认 | <b>l</b>    |                                       | 6  |
|    | 2.1. | 装箱          | 首内容确认                                 | 6  |
|    | 2.2. | 订货          | 行号确认                                  | 6  |
| 3. | 安装   |             |                                       | 7  |
|    | 3.1. | 搬运          | 5方法                                   | 7  |
|    | 3.1. | 1.          | 用吊车搬运控制柜                              | 7  |
|    | 3.1. | 2.          | 用叉车搬运控制柜                              | 7  |
|    | 3.2. | 安装          | 场所和环境                                 | 8  |
|    | 3.3. | 安装          | · 位置                                  | 8  |
| 4. | 配线   |             |                                       | 9  |
|    | 4.1. | 电缆          | 链连接的注意事项                              | 9  |
|    | 4.2. | 供电          | 1电源                                   | 9  |
|    | 4.3. | 连接          | 专方法                                   | 9  |
|    | 4.3. | 1.          | 连接供电电缆                                | 9  |
|    | 4.3. | 2.          | 连接示教编程器                               | 10 |
| 5. | 电源的控 | <b>菱通</b> 与 | 5切断                                   | 11 |
|    | 5.1. | 接通          | 9主电源                                  | 11 |
|    | 5.1. | 1.          | 初始化诊断                                 | 11 |
|    | 5.1. | 2.          | 初始化诊断完成时的状态                           | 11 |
|    | 5.2. | 接通          | 1伺服电源                                 | 14 |
|    | 5.2. | 1.          | 再现模式                                  | 14 |
|    | 5.2. | 2.          | 示教模式                                  | 14 |
|    | 5.3. | 切断          | f电源                                   | 15 |
|    | 5.3. | 1.          | 切断伺服电源(急停)                            | 15 |





|     | 5                                                | .3.2.     | 切断主电源            | 15 |
|-----|--------------------------------------------------|-----------|------------------|----|
| 6.  | 动作研                                              | 角认        |                  | 16 |
| 系约  | で 部件 かんしょう かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい | <b>卜绍</b> |                  | 18 |
| 7.  | 控制部                                              | 部分介绍      |                  | 18 |
|     | 7.1.                                             | 示教        | 编程器              | 18 |
|     | 7                                                | '.1.1.    | 示教编程器外观          | 18 |
|     | 7                                                | .1.2.     | 示教编程器的键          | 19 |
|     | 7                                                | .1.3.     | 示教编程器的画面显示       | 21 |
|     | 7                                                | 1.4.      | 模式开关介绍           | 24 |
|     | 7                                                | .1.5.     | 急停按钮介绍           | 25 |
|     | 7                                                | .1.6.     | 伺服使能开关介绍         | 25 |
|     | 7                                                | .1.7.     | 示教编程器内部的接线端子信号定义 | 25 |
|     | 7                                                | '.1.8.    | 示教编程器线缆          | 26 |
| 系统  | 的能力                                              | 个绍        |                  | 28 |
| 8.  | 系统设                                              | 0置        |                  | 28 |
|     | 8.1.                                             | 权限        | 管理               | 28 |
|     | 8.2.                                             | 版本        | 查看               | 29 |
|     | 8.3.                                             | 系统        | 注销               | 30 |
|     | 8.4.                                             | 运动        | 参数设置             | 30 |
|     | 8.5.                                             | 负载        | 设置               | 31 |
|     | 8.6.                                             | 碰撞        | 检测设置             | 32 |
|     | 8.7.                                             | 单层        | 码垛设置             | 32 |
| 9.  | 工程》                                              | 及文件管      | 理                | 34 |
|     | 9.1.                                             | 新建        | 工程或文件            | 34 |
|     | 9                                                | .1.1.     | 新建工程             | 34 |
|     | 9                                                | .1.2.     | 新建程序文件           | 35 |
|     | 9                                                | .1.3.     | 删除工程或文件          | 35 |
|     | 9.2.                                             | 复制        | /粘贴工程或文件         | 37 |
|     | 9                                                | .2.1.     | 复制/粘贴工程          | 37 |
|     | 9                                                | .2.2.     | 复制程序文件           | 37 |
|     | 9.3.                                             | 导入        | /注销工程或文件         | 39 |
|     | 9                                                | .3.1.     | 导入/注销工程          | 39 |
|     | 9                                                | .3.2.     | 导入/注销程序文件        | 39 |
| 10. | 程序扩                                              | 旨令编辑      |                  | 40 |
|     | 10.1.                                            | 新建        | 指令               | 40 |
|     | 1                                                | 0.1.1.    | 新建运动指令           | 40 |
|     | 1                                                | 0.1.2.    | 新建控制指令           | 43 |
|     | 1                                                | 0.1.3.    | 新建 IO 指令         | 47 |
|     | 1                                                | 0.1.4.    | 新建等待指令           | 51 |
|     | 1                                                |           | 新建视觉指令           |    |
|     | 1                                                | 0.1.6.    | 新建时钟指令           | 52 |
|     | 1                                                |           | 新建跟随指令           |    |
|     | 1                                                | 0.1.8.    | 新建自定义指令          | 54 |
|     | 10.2.                                            | 修改        | 指令               | 62 |
|     | 1                                                | 0.2.1.    | 修改运动指令           | 62 |





|     | RUBUITUS      |                                        |    |
|-----|---------------|----------------------------------------|----|
|     | 10.2.2        | 2. 修改控制指令                              | 66 |
|     | 10.2.3        | 3. 修改 IO 指令                            | 68 |
|     | 10.2.4        | 4. 修改 Wait 指令                          | 71 |
|     | 10.2.5        | 5. 修改时钟指令                              | 72 |
|     | 10.2.6        | 6. 修改跟随指令                              | 72 |
|     | 10.2.7        | 7. 修改循环停止指令                            | 72 |
|     | 10.2.8        | 3. 修改自定义指令                             | 73 |
|     | 10.3. 多       | 夏制/粘贴指令                                | 78 |
|     | 10.3.1        | 1. 复制指令                                | 78 |
|     | 10.3.2        | 2. 粘贴指令                                | 78 |
|     | 10.4. 删       | ·                                      | 78 |
|     | 10.5. 该       | 00000000000000000000000000000000000000 | 78 |
| 11. | 数据管理          |                                        | 79 |
|     | 11.1.         | 数据管理界面                                 | 79 |
|     | 11.2.         | 所建变量                                   | 79 |
|     | 11.2.1        | I. 新建基本数据类型变量                          | 79 |
|     | 11.2.2        |                                        |    |
|     | 11.2.3        | 3. 新建系统数据类型                            | 81 |
|     | 11.2.4        | 1. 视觉返回类型                              | 84 |
|     | 11.2.5        | 5. 时钟数据类型                              | 85 |
|     | 11.2.6        | <b>6</b> . 力矩数据类型                      | 85 |
|     | 11.2.7        | 7. 返回值类型                               | 86 |
|     | 11.3.         | 巨改变量值                                  | 87 |
|     | 11.3.1        | I. 更改基本数据变量值                           | 87 |
|     | 11.3.2        | 2. 更改位置变量值                             | 88 |
|     | 11.3.3        | B. 更改视觉识别返回值                           | 88 |
|     | 11.3.4        | <b>1</b> . 更改时钟变量                      | 88 |
|     | 11.3.5        | 5. 更改跟随返回值                             | 88 |
|     | 11.3.6        | <b>6</b> . 更改循环停止标志                    | 88 |
|     | 11.3.7        | 7. 更改工具坐标 Tool 的值                      | 89 |
|     | 11.3.8        | 3. 更改用户坐标系 RefSys 变量的值                 | 90 |
| 12. | 系统输入输         | 俞出( <b>I/O</b> )管理                     | 94 |
|     | 12.1. 豸       | 系统输入输出管理界面                             | 94 |
|     | 12.2. 豸       | 系统 IO 状态查看和设置                          | 94 |
|     | 12.2.1        | 1. 查看数字输入端口                            | 94 |
|     | 12.2.2        | 2. 查看数字输出端口                            | 94 |
|     | 12.3. 👸       | 设置 IO 端口值                              | 95 |
| 13. | 手动监视与         | <b>亏设置</b>                             | 96 |
|     | 13.1.         | F动监视与设置界面                              | 96 |
|     | 13.2. 材       | 几器人状态查看                                | 96 |
|     | 13.3. 逆       | <b>E</b> 续模式和寸动模式                      | 96 |
|     |               | 点动坐标系切换                                |    |
|     | <b>13.5</b> . | È局速度设置                                 | 97 |
|     | 13.6. 材       | 几器人原点校准功能                              | 98 |
|     |               | 几器人的原点位置姿态                             |    |
|     | _             |                                        |    |





|       | 13.7     | <sup>7</sup> .1. | 原点位置校准   | 98  |
|-------|----------|------------------|----------|-----|
|       | 13.7     | 7.2.             | 原点校准方法   | 98  |
| 14.   | 系统日志     | <u>.</u>         |          | 99  |
|       | 14.1.    | 系统               | 日志界面     | 99  |
|       | 14.2.    | 系统               | 信息说明     | 99  |
|       | 14.3.    | 报警               | 及报告信息查看  | 99  |
|       | 14.4.    |                  | 及报警信息清除  |     |
| 操作    | =说明      |                  |          | 101 |
| 15.   | 机器人的     | 自坐标              | 系        | 101 |
|       | 15.1.    | 坐标               | 系的种类     | 101 |
|       | 15.2.    | 关节               | 坐标系      | 101 |
|       | 15.3.    | 直角               | 坐标系      | 102 |
|       | 15.4.    | 工具               | 坐标系      | 103 |
| 16.   | 示教       |                  |          | 104 |
|       | 16.1.    | 急停               | 的确认      | 104 |
|       | 16.2.    | 示教               | 模式及安全性保证 | 104 |
|       | 16.3.    | 示教               | 前的准备     | 104 |
|       | 16.4.    | 示教               | 的基本步骤    | 104 |
|       | 16.5.    | 轨边               | 的确认      | 110 |
|       | 16.6.    | 程序               | 的修改      | 110 |
| 17.   | 再现       |                  |          | 112 |
|       | 17.1.    | 再班               | 前的准备     | 112 |
|       | 17.2.    | 再班               |          | 112 |
|       | 17.3.    | 停止               | 与再启动     | 112 |
|       | 17.3     | 3.1.             | 暂停操作     | 112 |
|       | 17.3     | 3.2.             | 急停操作     | 113 |
|       | 17.3     | 3.3.             | 急停后的再启动  | 113 |
|       | 17.3     | 3.4.             | 报警引起的停止  | 113 |
|       | 17.3     | 3.5.             | 其他停止     | 113 |
|       | 17.4.    | 修改               | 再现速度     | 114 |
| 附录    | <u>.</u> |                  |          | 115 |
| 附录    | kA 指令分   | 介绍.              |          | 115 |
|       | 基本指令     | ·                |          | 115 |
|       | 运动指令     | ·                |          | 115 |
|       | 控制指令     | ٠                |          | 118 |
|       | IO 指令    |                  |          | 119 |
|       | 视觉指令     | ٠                |          | 120 |
|       | 时钟指令     | ٠                |          | 120 |
|       | 等待指令     | ٠                |          | 121 |
|       | 自定义指     | 令                |          | 121 |
| 4克 EE | 1 土      | 田                |          | 122 |





# 安装说明

# 1.安全

## 1.1. 保障安全

机器人与其他机械设备的要求通常不同,如它的大运动范围、快速的操作、手臂的快速运动等,这 些都会造成安全隐患。阅读和理解使用说明书及相关的文件,并遵循各种规程,以免造成人身伤害或备 事故。用户有责任保证其安全的操作环境符合和遵守地方及国家有关安全性的法令、法规及条例。

- 机器人的示教维护必须遵照下列法规:
  - 有关工业安全和健康的法律。
  - 有关工业安全和健康法律的强制性命令。
  - 有关工业安全和健康法律的相应条例。
- 其他有关法律:
  - 美国的职业安全与健康法。
  - 德国的工厂法。
  - 英国的工作安全与健康法。
  - 欧盟的 89/392 机械行业指令和欧共体的 91/368。



強制

准备

- 安全技术规则 根据符合有关法规的具体政策进行安全管理。

- 道宁
  - 工业机器人的安全操作 (ISO 10218)
- 増补
  - 安全管理系统

指定授权的操作者及安全管理人员,并给予进一步的安全教育。

• 示教和维修机器人的工作被列入工业安全和健康法律中的"危险操作"(仅限中国)。

## 1.2. 专门培训



- 示教和维护机器人的人员必须事先经过培训。
- 关于培训的更多信息请咨询南京埃斯顿机器人工程有限公司。





## 1.3. 机器人使用说明书清单

拥有并熟悉有关机器人的所有说明书是至关重要的。

您应具有下列说明书:

- 望制
- SCARA工业机器人手册
- SCARA机器人电气维护手册

请确认您拥有上述所有说明书。如缺少上述任何说明书,请与南京埃斯顿机器人工程有限公司联系。

## 1.4. 操作人员安全注意事项

整个机器人的最大动作范围内均具有潜在的危险性。为机器人工作的所有人员(安全管理员、安装人员、操作人员和维修人员)必须时刻树立安全第一的思想,以确保所有人员的安全。

- 机器人的安装区域内禁止进行任何的危险作业。如任意触动机器人及其外围设备, 将会有造成伤害的危险。
- 请采取严格的安全预防措施,在工厂的相关区域内应安放,如"易燃"、"高压"、"止步" 或"闲人免进"等相应警示牌。忽视这些警示可能会引起火警、电击或由于任意触动机 器人和其他设备会造成伤害。
- 严格遵守下列条款:



- 穿着工作服 (不穿宽松的衣服)。
- 操作机器人时不许戴手套。
- 内衣裤、衬衫和领带不要从工作服内露出。
- 不佩戴大的首饰,如耳环、戒指或垂饰等。
- 必要时穿戴相应的安全防护用品,如安全帽、安全鞋(带防滑底的)、面罩、防护镜和手套。
- 不合适的衣服可能会造成人身伤害。
- 未经许可的人员不得接近机器人和其外围的辅助设备。不遵守此提示可能会由于触动控制柜、工件、定位装置等而造成伤害。

## 1.5. 机器人的安全注意事项

## 1.5.1.安装及配线安全

安装和配线时,请从SCARA系列机器人使用说明书中查阅详细资料,在安装准备及安装过程中,要遵守下列事项,确保安装过程的安全。





- 确认有足够的空间来维修机器人、控制柜和其它外围设备。否则可能会在维修期间 造成伤害事故。
- 机器人是由控制柜或夹具用控制柜进行控制的。为了确保安全,一定要在能看得见机器人的位置进行操作。未经授权的人员操作可能会造成人身伤害或设备损坏。
- 控制柜应安装在机器人动作范围的安全围栏之外。否则可能会由于接触机器人而造成人身伤害和设备损坏。



- 针对各种机器人,应按说明书中规定的螺栓大小及类型来安装机器人.否则可能会造成人身伤害和设备损坏。
- 为控制柜配线前须熟悉配线图,配线须按配线图进行。错误的配线或零、部件的不正确移位,可能产生设备损坏或人身伤害。
- 在进行控制柜与机器人、外围设备间的配线及配管时须采取防护措施,如将管、线或电缆从坑内穿过或加保护盖予以遮盖,以免被人踩坏或被叉车辗压而坏。
- 操作者和其他人员可能会被明线、电缆或管路绊住而将其损坏,从而会造成机器人的非正常动作,以致引起人身伤害或设备损坏。

### 1.5.2.作业区安全

在作业区内工作时粗心大意会造成严重的事故,因此强令执行下列防范措施:



· 在机器人周围设置安全围栏,以防造成与已通电的机器人发生意外的接触。在安全围栏的入口处要张贴一个"远离作业区"的警示牌。安全围栏的门必须加装可靠的安全联锁装置。忽视此警示会由于接触机器人而可能造成严重的事故。



备用工具及类似的器材应放在安全围栏外的合适地区内。工具和散乱的器材不要遗留在机器人、控制柜或系统(如传送带)等周围,如果机器人撞击到作业区中这些遗留物品,即会发生人身伤害或设备事故。

## 1.5.3.操作安全



机器人的操作或检查人员必须接受有关法规及公司策略的培训。





- 3
- 当往机器人上安装一个工具时,务必先切断(OFF)控制柜及所装工具上的电源并锁住其电源开关,而且要挂一个警示牌。安装过程中如接通电源,可能会因此造成电击,或会产生机器人的非正常运动,从而引起伤害。
- 绝不要超过机器人的允许范围。否则可能会造成人身伤害和设备损坏。
- 无论何时如有可能的话,应在作业区外进行示教工作。
- 当在机器人动作范围内进行示教工作时,则应遵守下列警示,否则可能误操作机器 人,造成伤害事故:
  - 始终从机器人的前方进行观察。
  - 始终按预先制定好的操作程序进行操作。
  - 始终具有一个当机器人万一发生未预料的动作而进行躲避的想法。
  - 确保您自己在紧急的情况下有退路。
- 在操作机器人前,应先按控制柜前门及示教编程器右上方的急停键,以检查"伺服准备"的指示灯是否熄灭,并确认其电源确已关闭。如果紧急情况下不能使机器人停止,则会造成机械的损害。
- 在执行下列操作前,应确认机器人动作范围内无任何人,如果人员进入机器人动作范围,可能会因与机器人接触而引起伤害:
  - 接通控制柜的电源时。
  - 用示教编程器移动机器人时。
  - 试运行时。
  - 再现操作时。
- 如发生问题,则应立即按动急停键。急停键位于控制柜前门及示教编程器的右上方。

示教机器人前先执行下列检查步骤,如发现问题则应立即更正,并确认所有其他必须做的工作均已完成。



- 检查机器人运动方面的问题。
- 检查外部电缆的绝缘及护罩是否损害。
- 示教编程器使用完毕后,务必将示教编程器挂回到控制柜的钩子上。如示教编程器 遗留在机器人上、系统夹具上或地面上,则机器人或装载其上的工具将会碰撞它, 因此可能引起人身伤害或设备损坏。

## 1.6. 移动及转让机器人的注意事项

移动及转让机器人时,应遵照下列安全防范事项:

• 移动或转让机器人时,应附带机器人的有关说明书(见机器人使用说明书清单)以便所有用户有权使用这些必须的说明书。如缺少任何说明书,请与埃斯顿机器人工程有限公司联系。



- 如果机器人及控制柜上的警示牌模糊不清,请清理此警示牌,以便能被正确辨认。 另请注意某些地方法规的规定,如安全警示牌不在适当的位置上,可能会被禁止该 设备的使用。
- 移动或转让机器人时,建议请埃斯顿机器人工程有限公司派员进行检查。错误的安 装及配线会造成人身伤害和设备事故。









• 绝不要对机器人或控制柜做任何改动。不遵守此警示会引起火警、电力故障或操作错误,以致造成设备损坏及人身伤亡。

## 1.7. 废弃机器人的注意事项



- 废弃机器人必须遵照国家及地方的法律和有关规定。
- 废弃前即使是作临时的保管,也应将机器人固定牢靠以防止倾倒。否则可能会由于机器人摔倒而造成伤害。







## 2.1. 装箱内容确认

产品到达后,请清点其发货清单,标准的发货清单中包括下列 5 项内容:(有关选项货物内容的信息将单独提供)。

- 机器人
- 控制柜
- 示教编程器
- 供电电缆(机器人与控制柜间的电缆)
- 全套说明书

## 2.2. 订货号确认

确认机器人与控制柜上的订货号是否一致。





# 3. 安装

## 3.1. 搬运方法



- 天车、吊具和叉车的操作必须由经授权的人员进行。否则可能会造成人身伤害和设备损坏。
- 搬运期间应避免振动、摔落或撞击控制柜。过度的振动或撞击控制柜会对其性能产生有害的影响。

### 3.1.1.用吊车搬运控制柜

搬运控制柜前应检查下列事项:

- 确认控制柜的重量,使用承载量大于控制柜重量的起吊设备进行起吊。
- 起吊前安上吊环螺栓,并确认固定牢固。

### 3.1.2.用叉车搬运控制柜

使用叉车搬运控制柜时,应遵照下列防范措施:

- 确认有一个安全的作业环境,使控制柜能被安全的搬运到安装场地。
- 通知在叉车路经地区工作的人员,请他们注意控制柜正在搬运过程中。.
- 搬运时应避免控制柜移位或倾倒。.
- 搬运控制柜时应尽可能地放低其高度位置。
- 搬运期间应避免振动、摔落或撞击控制柜。

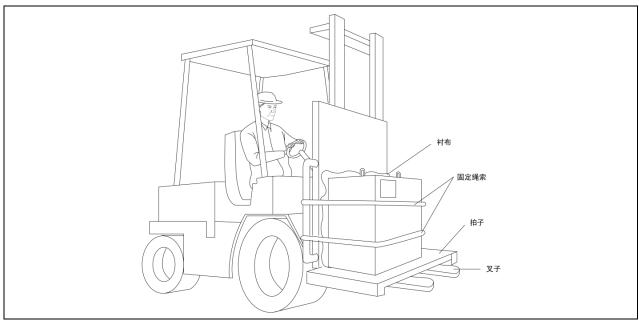



图 3.1 叉车搬运示意图





## 3.2. 安装场所和环境

安装控制柜前安装地点必须符合下列条件:

- 操作期间其环境温度应在0至45℃(32至113°F)之间;搬运及维修期间应为-10至60°C(14至140°F)。
- 湿度少,比较干燥的地方。相对湿度在10%-90%,不结露。
- 灰尘、粉尘、油烟、水较少的场所。
- 作业区内不允许有易燃品及腐蚀性液体和气体。
- 对控制柜的振动或冲击能量小的场所(振动在0.5G以下)。
- 附近应无大的电器噪音源(如气体保护焊(TIG)设备等)。
- 没有与移动设备(如叉车)碰撞的潜在危险。

## 3.3. 安装位置

- 控制柜应安装在机器人动作范围之外(安全围栏之外)。
- 控制柜应安装在能看清机器人动作的位置。
- 控制柜应安装在便于打开门检查的位置。
- 控制柜至少要距离墙壁500 mm,以保持维护通道畅通。





# 4.配线



• 系统接地前,应关闭电源并锁住主电源开关,否则可能会造成电击和人身伤害。



• 在切断电源后的5分钟内,不要接触控制柜内的任何基板。电源切断后电容器会储存电能,故无论何时对基板进行操作均应小心,不遵守此警告可能会引起电击。

- 门不关闭则打不开电源,即安全联锁装置阻止打开电源。否则可能造成火警和电击。
- 在配线期间,控制柜处于紧急停止的模式下,所发生的任何情况由用户负责。配线完成后进行一次操作检查。否则可能会造成人身伤害或机械故障。



- 配线须由经授权的工作人员进行。不正确的配线可能会引起火警和电击。
- 按照说明书中规定的额定容量进行配线。不正确的配线可能会引起火警和机械损坏。
- · 确认各电路接线安全牢固。电路接线不牢固会引起火警和电击。

## 4.1. 电缆连接的注意事项

连接控制柜与外围设备间的电缆是低压电缆。控制柜的信号电缆要远离主电源电路,高压电源线路 不与控制柜的信号电缆平行,如不可避免,则因使用金属管或金属槽来防止电信号的干扰。如果电缆必 须交叉布置,则应使电源电缆与信号电缆作垂直正交。

确认插座和电缆编号,防止错误的连接引起设备的损坏。一个连接机器人和控制柜;另一个连接控制柜和外围设备。错误的连接将会引起电子设备的损坏。

连接电缆时要让所有非工作人员撤离现场。要把所有电缆安放在地下带盖的电缆沟中。

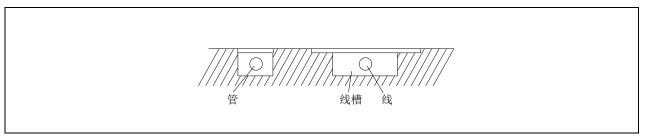



图 4.1 控制柜电缆连接示意图

## 4.2. 供电电源

三相电源是由交流220V,50Hz组成。当存在有临时性的电源频率中断或电压下降时,停电处理电路动作和伺服电源切断。将控制柜电源连接到一个电压波动小(±10%)的稳定输入电源上去。

## 4.3. 连接方法

### 4.3.1.连接供电电缆

- 1. 拆去包装, 取出供电电缆, 将电缆连接到控制柜后面的插座上。
- 2. 将机器人与控制柜连接。







3. 确认电缆接头的形状与尺寸以及机器人上的插座位置,将电缆插入相应的插座上,并固定牢靠。

## 4.3.2.连接示教编程器

将示教编程器的电缆连接到控制柜门左侧的插座上。机器人、控制柜和示教编程器的连接至此完成。







# 5.电源的接通与切断



- 合上控制柜上的主电源开关时,应确认在机器人动作范围内无任何人员。忽视此提示可能会发生与机器人的意外接触而造成人身伤害。
- 如有任何问题发生,应立即按动急停键。急停键位于控制柜前门的右上方和示教编程器的右侧。

## 5.1. 接通主电源

把控制柜前门上的主电源开关扳转到接通(ON)的位置,此时主电源接通,则进行初始化诊断和读入当前开始位置值。

### 5.1.1.初始化诊断

接通主电源时,控制柜进行初始化诊断,在示教编程器的屏幕上显示启动画面。



图 5.1 示教编程器启动页面

### 5.1.2.初始化诊断完成时的状态

- 控制柜初始化完成状态 控制柜启动完成后,控制器及驱动器处于正常运行状态。
- 2. 示教编程器

示教编程器启动完成后, Run指示灯常亮, Err指示灯不亮, 启动完成后界面如下图所示:







图 5.2 示教编程器主页面

示教编程器的界面上部分显示了系统的各个状态, 具体如下图所示:



图 5.3 示教编程器状态指示

示教编程器的状态指示均采用图标提示,各图标的含义,详见下列各表的说明。

表 5.1 网络状态说明

| 网络状态 | 说明   |
|------|------|
| ×    | 连接故障 |
|      | 连接正常 |

表 5.2 模式指示说明

| 模式指示              | 说明        |
|-------------------|-----------|
| √ <sub>w</sub> )T | 示教模式      |
| Ø <sub>A</sub>    | 再现模式      |
| ⊗                 | 禁止示教盒操作模式 |



#### 电源的接通与切断



### 表 5.3 用户级别指示说明

| 用户级别指示       | 说明          |
|--------------|-------------|
| <b>&amp;</b> | 管理员         |
|              | 操作人员        |
| <b>&amp;</b> | 只有查看权限的操作人员 |

### 表 5.4 坐标系图标说明

| 当前坐标系                                        | 说明    |
|----------------------------------------------|-------|
| <b>.</b>                                     | 关节坐标系 |
| <b>\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{</b> | 直角坐标系 |
| 8                                            | 工具坐标系 |

#### 表 5.5 伺服使能状态图标说明

| 伺服状态 | 说明    |
|------|-------|
| 3    | 伺服使能  |
| X    | 伺服未使能 |

### 表 5.6 再现运行模式图标说明

| X 616 1150.2111X.70111556 73 |        |  |
|------------------------------|--------|--|
| 再现运行模式                       | 说明     |  |
| ∓ <mark>**</mark> !±         | 单步运行模式 |  |
| ₽                            | 连续运行模式 |  |

#### 表 5.7 运行状态图标说明

| 运行状态        | 说明 |
|-------------|----|
| <b>&gt;</b> | 运行 |
|             | 停止 |

### 表 5.8 伺服使能状态图标说明

| 伺服使能开关状态图标  | 说明        |
|-------------|-----------|
| Ü           | 伺服使能开关未按下 |
| <u>\$</u> ) | 伺服使能开关已按下 |







#### 电源的接通与切断



表 5.9 急停按钮状态图标说明

| 急停按钮状态   | 说明  |
|----------|-----|
| <b>-</b> | 未按下 |
| <b>£</b> | 已按下 |

表 5.10 报警信息类型图标说明

| 报警信息类型 | 说明      |
|--------|---------|
| •      | 提示信息    |
| 8      | 出现错误或故障 |

## 5.2. 接通伺服电源

### 5.2.1.再现模式

1. 关闭安全围栏,把示教编程器操作打到自动模式,如下图所示:

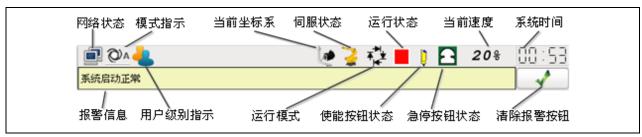



图 5.4 自动模式的状态指示

- 2. 并按下控制柜上的"主电"按钮(不同电柜的"主电"按钮的布置位置有所差异,具体参考实际配置电柜)。
- 3. 按动示教编程器上的[Mot]键,以接通伺服电源,当示教盒左上方指示灯"Mot"亮时,表明伺服进入准备好状态。

## 5.2.2.示教模式

关闭安全围栏,把示教编程器操作打到手动模式,如下图所示:



图 5.5 示教模式的状态指示

按下控制柜上的"主电"按钮,如下图所示: (不同电柜的"主电"按钮的布置位置有所差异,具体参考实际配置电柜)。







#### 电源的接通与切断



按下示教编程器上的[Mot]键,以接通伺服电源,当示教盒左上方指示灯"Mot"亮时,表明伺服进入准备好状态

当操作者握紧示教编程器上的使能开关时,则伺服电源被接通,并且"Mot"指示灯点亮。

## 5.3. 切断电源

### 5.3.1.切断伺服电源(急停)

当急停键按动后,伺服电源被切断,则机器人就不能再进行操作。 切断伺服电源

- 按动控制柜前门上或示教编程器上的急停键,则切断伺服电源。
- 一旦伺服电源切断,则制动装置启动,机器人就被制动而不能再进行任何操作。
- 可在任何模式(示教模式、再现模式或远程模式)下的任何时候进入紧急停止状态。

### 5.3.2.切断主电源

切断伺服电源后,再切断主电源。把控制柜前门上的主电源开关扳转至切断(OFF)的位置,则主电源被切断。





# 6.动作确认

在进行轴动作前确保进行了"电源的接通与切断"的示教模式时的所有操作,并且整个系统状态与 "电源的接通与切断"章节描述相同方可进行接下来的操作。

通过按动示教编程器上的每个"轴操作键",使机器人的每个轴产生所需的动作。下图表明了每个轴 在关节坐标系下的动作示意(机器人坐标系说明请参见"机器人的坐标系")。

INFO

- 开动机器人前,务必清除作业区内的所有杂物。
- 系统固定夹具的位置请参阅有关说明书。

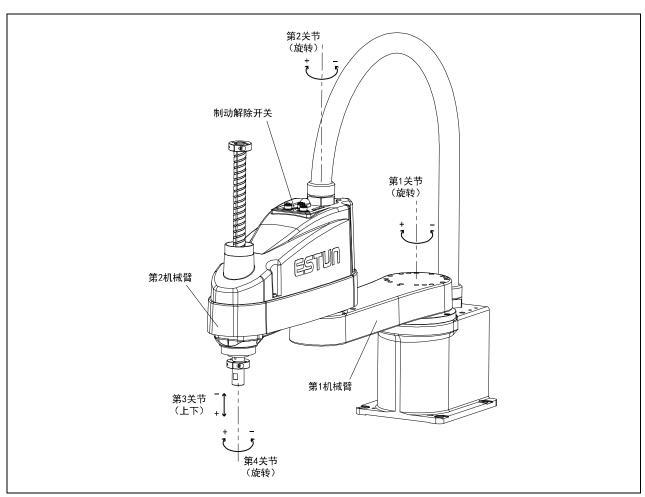



图 6.1 关节坐标系下的各轴动作示意图

在动作确认时,注意控制器的启停时序,如下图所示。



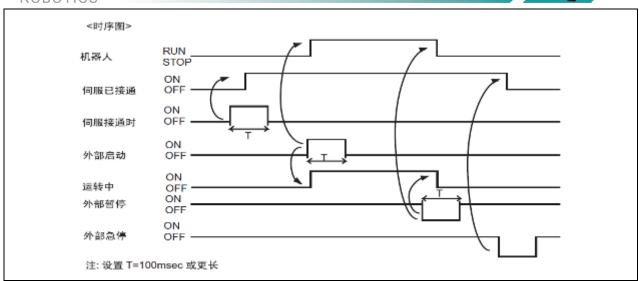



图 6.2 机器人控制器启停时序图





# 系统部件介绍

# 7.控制部分介绍

## 7.1. 示教编程器

### 7.1.1.示教编程器外观

示教编程器上设有用于对机器人进行示教和编程所需的操作键和按钮,示教编程器外观如下图所示:



图 7.1 示教编程器外观图

表 7.1 示教编程器外观结构组件说明

| 序号       | 说明     |
|----------|--------|
| 1        | 显示屏    |
| 2        | 紧急停止按钮 |
| 3        | 模式选择开关 |
| 4a,4b,4c | 全局功能按键 |
| 5        | 状态指示灯  |
| 6b       | 伺服使能开关 |
| 7        | 悬挂手柄   |
| 8        | 电缆接入区  |





#### 控制部分介绍

| 序号 | 说明    |
|----|-------|
| 9  | USB插槽 |
| 10 | 触摸笔   |

## 7.1.2.示教编程器的键

### 7.1.2.1. 功能键

示教编程器的功能键如下图所示:



图 7.2 示教编程器功能键

表 7.2 示教编程器功能键说明

| 按键   | 功能说明                                                                            |
|------|---------------------------------------------------------------------------------|
| Rob  | 预留功能键                                                                           |
| Mot  | 电机使能功能键                                                                         |
| Jog  | <b>坐标系选择功能键</b><br>在点动模式下实现机器人坐标系的切换,包括关节坐标系,基坐标系和<br>工具坐标系(坐标系相关介绍参见第8章机器人坐标系) |
| F/B  | <b>程序前进/后退执行功能键</b><br>示教模式下程序单步执行时,F/B切换程序前进/后退执行                              |
| Step | 再现运行方式选择功能键<br>再现运行时,运行方式的选择,包括单步和连续两种方式                                        |
| V-   | 点动速度减功能键                                                                        |
|      | 点动速度加功能键                                                                        |

#### 7.1.2.2. 菜单键

示教编程器的菜单键如下图所示:





### 控制部分介绍



图 7.3 示教编程器菜单键

表 7.3 菜单键说明

| 按键 | 功能说明                                                  |
|----|-------------------------------------------------------|
|    | <b>用户设置菜单</b><br>此菜单界面实现用户登录,系统设置等功能                  |
|    | 工程管理菜单<br>此菜单界面实现对工程的管理功能,如导入导出、新建、删除、重命名<br>等        |
|    | <b>程序文件管理菜单</b><br>此菜单界面实现对程序文件的编辑功能,如示教指令插入、修改等      |
|    | <b>变量管理菜单</b><br>此菜单界面实现变量的新建、赋值、管理等功能                |
|    | I/O信号监视菜单<br>此菜单界面实现系统I/O信号的监视,并可进行I/O信号的诊断。          |
|    | <b>点动操作菜单</b><br>此菜单界面实现对示教操作参数的设置功能,如点动速度、坐标系切换<br>等 |
|    | 操作及报警信息管理菜单<br>此菜单界面显示所有系统操作反馈信息,包括提示、警告、报警等          |

### 7.1.2.3. 轴操作键

示教编程器轴操作键如下图所示:





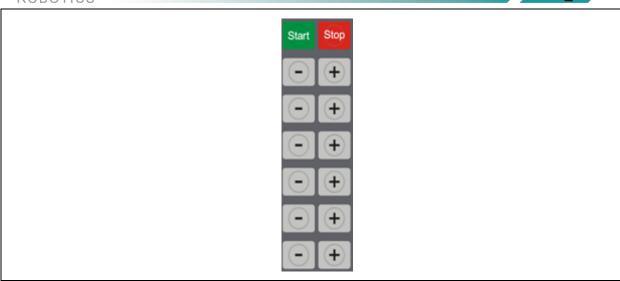



图 7.4 示教编程器轴操作键

表 7.4 轴操作键说明

| 按键    | 功能说明                                                                                                       |
|-------|------------------------------------------------------------------------------------------------------------|
| Start | 启动示教再现按键                                                                                                   |
| Stop  | 示教再现停止按键                                                                                                   |
| +     | 正方向点动按键<br>关节坐标系下,对应关节的正方向运动,基坐标系下,对应X、Y、Z、A、B、C的正方向运动,工具坐标系下,对应TX、TY、TZ、TA、TB、TC的正方向运动(坐标系相关介绍参见:机器人坐标系)  |
|       | 反方向点动按键<br>关节坐标系下,对应关节的负方向运动,基坐标系下,对应X、Y、Z、A、B、C的负方向运动,工具坐标系下,对应TX、TY、TZ、TA、TB、TC的负方向运动(坐标系相关介绍参见:机器人的坐标系) |

## 7.1.3.示教编程器的画面显示

#### 7.1.3.1. 4 个显示区

示教编程器的显示屏是 7 英寸的彩色显示屏, 能够显示数字、字母和符号。显示屏分为 4 个显示区, 分别为通用显示区、状态显示区、快捷按钮显示区和点动显示区。示教编程器的显示区界面如下图所示:

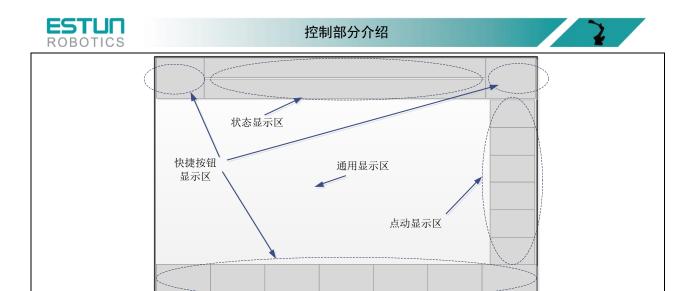



图 7.5 示教编程器显示界面

#### 7.1.3.2. 通用显示区

在通用显示区,显示各种操作菜单界面,可对程序、特性文件、各种设定进行显示和编辑。

#### 7.1.3.3. 状态显示区

在状态区内显示系统的各运行状态,包括运行模式、伺服状态、点动坐标系和点动速度等,如下图 所示:

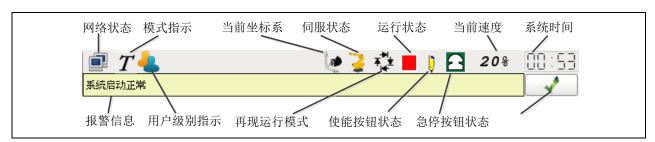



图 7.6 示教编程器状态显示区

表 7.5 状态区显示内容说明

| 状态   | 说明                          |
|------|-----------------------------|
| 模式指示 | 示教编程器运行模式                   |
|      | <b>○</b> A <sub>:再现模式</sub> |
|      | <b>學</b> ▼:示教模式             |
|      | : 禁止操作模式                    |
| 伺服状态 | 机器人伺服状态                     |
|      | : 伺服使能                      |
|      | : 伺服未使能                     |





#### 控制部分介绍

| ROBOTICS |                          |
|----------|--------------------------|
| 状态       | 说明                       |
| 机器人坐标系   | : 关节坐标系                  |
|          | - : 天卫王彻尔                |
|          | : 直角坐标系                  |
|          | : 工具坐标系                  |
| 当前速度     | 当前的点动、示教、再现的速度,为最高速度的百分比 |
| 使能开关状态   | 显示示教编程器上的使能开关当前状态:       |
|          | : 使能开关未接通                |
|          | : 使能开关已接通                |
| 程序运动状态   | 再现程序运行状态                 |
|          | : 运行                     |
|          | : 停止                     |
| 程序运行模式   | 再现程序的运动模式                |
|          | ★ : 单步运行模式               |
|          | : 连续运行模式                 |
| 急停按钮状态   | <b>二</b> : 急停按钮未按下       |
|          | <b>企</b> : 急停按钮已按下       |
| 用户级别指示   | 当前用户权限等级                 |
|          | 金: 管理员                   |
|          | : 操作人员                   |
|          | : 仅有查看权限的操作人员            |
| 时间日期     | 显示系统当前时间和日期              |

#### 7.1.3.4. 快捷按钮显示区

显示当前页面下,各个快捷按钮的作用。

### 7.1.3.5. 点动显示区

点动显示区内显示当前对应点动按键的点动方式,如当点动显示区显示 A1、A2、A3、A4 时,对应为关节点动方式。







### 7.1.4.模式开关介绍

系统运行模式由三种,分别是示教模式、再现模式、远程模式。

#### 7.1.4.1. 示教模式

在示教模式下可以进行:

- 编制、示教程序;
- 修改已登录程序;
- 各种特性文件和参数的设定。

#### 7.1.4.2. 再现模式

在再现模式下可以进行:

- 示教程序的再现;
- 各种条件文件的设定、修改或删除。

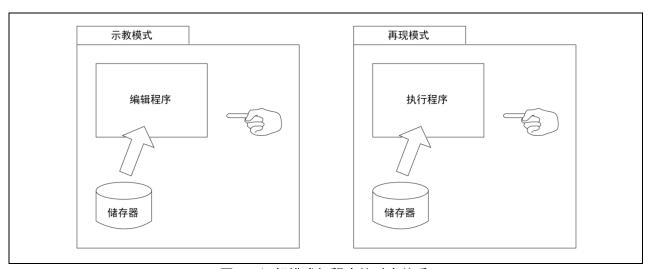
#### 7.1.4.3. 远程模式

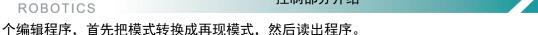
在输入口DI8短接24v情况下激活:

- 在某一个程序设置为自启动后,打开远程模式会自动导入该程序。
- 远程模式下对工程文件和程序文件不可操作

#### 7.1.4.4. 编辑程序和执行程序

系统随时可调出存在存储器内的程序,进行程序的编辑和执行。 作为编辑对象的程序叫做"编辑程序",是示教模式下显示程序内容时所显示的程序。 作为执行对象的程序叫做"执行程序",是再现模式下显示程序内容时所显示的程序。





图 7.7 运行模式与程序的对应关系

在示教编程器上对动作模式进行切换,编辑程序和执行程序之间不发生转换,在再现模式下运行一









### 7.1.5.急停按钮介绍

当发生紧急情况的时候人们可以通过快速按下此按钮来得到保护的措施。放置位置在电气控制柜的 前面板上。急停按钮按下后会被锁定,解除急停状态需要按按钮上的指示方向旋转按钮。



图 7.8 急停状态解除

## 7.1.6.伺服使能开关介绍

在示教和点动运行时,需要按下伺服使能开关才能使伺服使能(励磁),该开关在按下的第一个接触点时为接通使能信号,按到底时为断开使能信号。位置在示教编程器的把手位置,左、右两个开关均能起到接通与断开使能信号的作用。

### 7.1.7.示教编程器内部的接线端子信号定义

| I/O端子排引脚号 | 信号定义                     |
|-----------|--------------------------|
| 1         | ENABLE_ED1+(使能开关信号 1 输入) |
| 2         | ENABLE_ED1-(使能开关信号 1 输出) |
| 3         | ENABLE_ED2+(使能开关信号 2 输入) |
| 4         | ENABLE_ED2-(使能开关信号 2 输出) |
| 5         | NC                       |
| 6         | +24VDC                   |
| 7         | GND                      |
| 8         | E-STOP_ES1+              |
| 9         | E-STOP_ES1-              |
| 10        | E-STOP_ES2+              |
| 11        | E-STOP_ES2-              |

表 7.6 I/O 端子排引脚信号定义

表 7.7 RJ45 引脚信号定义

| RJ45引脚号 | 信号定义 |
|---------|------|
| 1       | TD+  |
| 2       | TD-  |
| 3       | RD+  |
| 4       | NC   |
| 5       | NC   |
| 6       | RD-  |
| 7       | NC   |
| 8       | NC   |





## 7.1.8.示教编程器线缆

### 7.1.8.1. 航插接口信号定义

表 7.8 航插接口信号定义

| 信号序号 | 线的颜色 | 信号定义                     |
|------|------|--------------------------|
| 1    | 粉红   | 24VDC                    |
| 2    | 黑    | GND                      |
| 3    | 棕绿   | E-STOP_ES1+              |
| 4    | 白绿   | E-STOP_ES1-              |
| 5    | 灰粉   | E-STOP_ES2+              |
| 6    | 红蓝   | E-STOP_ES2-              |
| 7    | 棕    | ENABLE_ED1+(使能开关信号 1 输入) |
| 8    | 黄    | ENABLE_ED1-(使能开关信号 1 输出) |
| 9    |      | NC                       |
| 10   |      | NC                       |
| 11   | 紫    | NC                       |
| 12   | 绿    | ENABLE_ED2+(使能开关信号 2 输入) |
| 13   | 蓝    | TD+                      |
| 14   | 白    | TD-                      |
| 15   | 橙    | RD+                      |
| 16   | 红    | RD-                      |
| 17   | 灰    | ENABLE_ED2-(使能开关信号 2 输出) |





### 7.1.8.2. 线缆与控制柜的连接

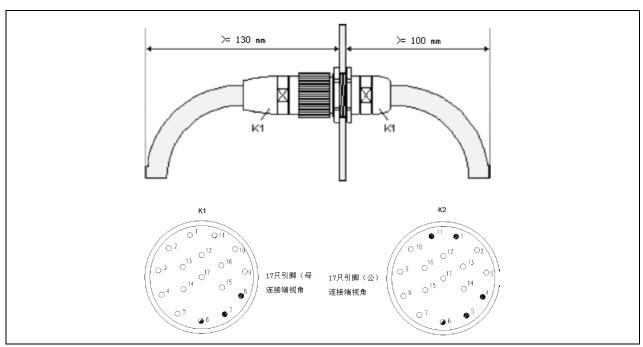



图 7.9 示教编程器线缆与控制柜的连接

K1, K2的各引脚信号定义同"航插接口信号定义"中的信号定义说明。





机器人控制器与用户的交互主要通过示教编程器进行的。示教编程器是机器人控制系统的重要组成部分,操作者通过示教盒进行手动示教,控制机器人达到不同位姿,并记录各个位姿点坐标利用机器人语言进行在线编程,实现程序回放,让机器人执行程序要求的轨迹运动。我司使用的示教编程器提供的功能组件包括:

- ◆ 工程管理
- ◆ 程序编辑
- ◆ 程序数据管理
- ◆ IO检测
- ◆ 手动检测
- ◆ 系统设置
- ◆ 系统日志

用户可以通过示教编程器的按键或触摸板来与控制系统交互的目的。

# 8.系统设置

本节所介绍的是系统设置界面下的配置和应用。

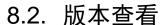
# 8.1. 权限管理

该机器人系统分为三种权限界定:管理员、用户以及游客。




图 8.1 用户权限图

在管理员权限下,可对系统做任何操作;


在用户权限下,可对系统进行基本操作;

在游客权限下,只能对系统进行查看,不可做任何操作。

不同的权限级别下,均可以重新设置密码







通过示教器界面, 我们可以查看示教器版本及控制器软件版本。

2017.4 月及之后发布的软件版本 SCARA 控制器的 IP 地址由 192.168.60.133 已经变成 192.168.6.63, 在现场升级时要注意与示教盒的版本对应关系。可以在示教器管理界面的"版本信息"界面 查看控制器版本号。控制器 2.2.0 及对应示教器之前的版本不支持在示教器界面中查看版本号。以后的版本均支持查看版本信息。

| 序号 | 示教器软件版本        | 示教器     | IP 地址         | 控制器版本      | IP 地址                     |
|----|----------------|---------|---------------|------------|---------------------------|
| 1  | PMCSR_V1.2.1   | ERT70   | 192.168.60.xx | V1.01/V1.0 | 192.168.60.133(端口号 56177) |
| 2  | PMCSR_V2.2.1   | ERT72   | 192.168.60.xx | V1.01/V1.0 | 192.168.60.133(端口号 56177) |
| 3  | PMCSR_V3.2.1   | 虚拟      | 192.168.60.xx | V1.01/V1.0 | 192.168.60.133(端口号 56177) |
| 4  | PMCSR_V2.2.5   | ERT72   | 192.168.6.62  | V2.2.0     | 192.168.6.63(端口号 56177)   |
| 5  | PMCSR_V3.2.5   | 虚拟      | 192.168.6.62  | V2.2.0     | 192.168.6.63(端口号 56177)   |
| 6  | PMCSR_V2.2.5.1 | ERT72_4 | 192.168.6.62  | V2.2.1     | 192.168.6.63(端口号 56177)   |
| 7  | PMCSR_V3.2.5.1 | 虚拟      | 192.168.6.62  | V2.2.1     | 192.168.6.63(端口号 56177)   |
| 8  | PMCSR_V2.2.6   | ERT72_4 | 192.168.6.62  | V2.2.2     | 192.168.6.63(端口号 56177)   |
| 9  | PMCSR_V3.2.6   | 虚拟      | 192.168.6.62  | V2.2.2     | 192.168.6.63(端口号 56177)   |
| 10 | PMCSR_V2.2.7   | ERT72_4 | 192.168.6.62  | V2.2.2     | 192.168.6.63(端口号 56177)   |
| 11 | PMCSR_V3.2.7   | 虚拟      | 192.168.6.62  | V2.2.2     | 192.168.6.63(端口号 56177)   |
| 12 | PMCSR_V2.2.8   | ERT72_4 | 192.168.6.62  | V2.2.5     | 192.168.6.63(端口号 56177)   |
| 13 | PMCSR_V3.2.8   | 虚拟      | 192.168.6.62  | V2.2.5     | 192.168.6.63(端口号 56177)   |

表 8.1 示教器、控制器版本匹配关系



图 8.2 从版本信息里查看版本





图 8.3 示教盒刚启动时查看版本

# 8.3. 系统注销

在系统注销配置界面下,可对示教盒系统关机或重启。



图 8.4 系统注销界面

# 8.4. 运动参数设置

运动参数设置界面为运动模式选择及振动抑制功能设置界面,界面如下:

#### 系统设置

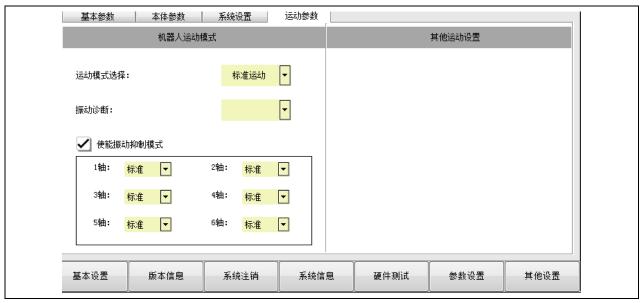



图 8.5 运动参数设置界面

运动模式选择:标准模式或高速模式,标准模式相较于高速模式运行节拍较慢。

振动诊断: 为开发预留设置, 暂无含义。

使能振动抑制模式:选中则振动抑制使能,反之振动抑制禁能。开启振动抑制功能,可抑制机器人运动抖动。附着的六个轴用于调节对应轴的振动抑制效果,共有标准、高、中高、中低、低五个调节档位,建议值为标准。若振动抑制效果不明显,则可以相应调高档位,反之调低档位。振动抑制抑制效果越强,抑制抖动能力越强,但运动节拍会有稍微降低;反之,抑制抖动能力减弱,运行节拍稍微提高。

# 8.5. 负载设置

为了达到最优的运动性能,需要在示教器界面对夹具和负载的质量进行设置,界面如下:



图 8.6 负载设置界面

系统默认负载质量(夹具质量 + 工件质量)为 5Kg, 一般情况下,不需要更改负载参数。如果对速度有更高要求,可以根据实际负载大小设置对应的负载参数。并且在程序运行时,为了保证运动性能,在夹具将负载释放后,调用指令 LoadEnable(false)通知内核负载已经释放。在机器人夹起工件后,用指令 LoadEnable(true)通知内核负载已经抓取。









请务必根据实际负载来设置负载参数。如果负载参数的设置值小于实际机器人安装的负载,可能会导致机器人减速机的损坏!

# 8.6. 碰撞检测设置

示教器界面可以修改碰撞检测使能及灵敏度。示教器使能默认开,各轴灵敏度默认值为 100%。此参数越大,碰撞检测阈值越大,灵敏度越差。建议设置 80~200 之间。



图 8.7 碰撞检测界面

# 8.7. 单层码垛设置

在系统设置>>其他设置>>单层码垛中进行设置,可以满足简易的码垛需求,界面如下:



图 8.8 单层码垛界面

需要配置的信息包括:在用户坐标系下的码垛起始点位置,每个工件的实际尺寸,每列工件的间隙









和每行工件的间隙, 工件数量。

该设置需要和相关指令(GetPalletPos、SetPalletIndex 指令)配合,才能应用到实际场景中。简单用法:

- 在单层码垛界面配置好之后,在指令界面中调用 SetPalletIndex 指令,设置准备码垛的索引值, 码垛时会从当前设置的索引值开始码垛。
- 在码垛当中,调用 GetPalletPos 得到即将去码的位置点,再调用运动指令达到该位置点,从而 实现码垛的功能需求。





# 9.工程及文件管理

本节所讲的是能够在机器人不动作的情况下进行的编辑操作。复制程序或文件、删除程序或文件等的操作只能在示教模式下进行。其他与模式无关的操作可以进行。

# 9.1. 新建工程或文件

## 9.1.1.新建工程

- 1. 按"工程管理"按键 , 进入工程界面,或者在主界面上点击"工程管理"进入工程管理界面,或者在主界面上,点击界面底部的"工程管理"按钮,都可以进入工程管理界面。如图:
  - 2. 点击 ">>"按钮,在新的菜单键中按下新建工程按钮,弹出新建工程对话框,如下图所示:



图 9.1 新建工程对话框

3. 直接点击命名空白处,在弹出的软键盘中输入工程名,如输入 test;



图 9.2 新建工程

4. 点击 " $\sqrt{}$ " 按钮,新建工程成功,在工程列表中可以看到名为 test 的工程及 main 文件:

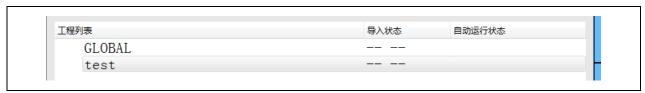



图 9.3 新建工程后的工程列表









## 9.1.2.新建程序文件

1. 选中新建文件的所属工程,如选择 testa 工程,点击 ">>"按钮,在新的菜单键中点击新建文件按钮,弹出新建文件对话框:



图 9.4 新建文件对话框

2. 点击新文件后面的空白栏,在弹出的软键盘中输入新的文件名,如 newProg:



图 9.5 新建文件

3. 点击新建文件对话框中的" $\sqrt{}$ "按键,新建文件成功,在 test 工程下出现名为 newProg 的新文件:



图 9.6 工程列表中新建文件后的示意

# 9.1.3.删除工程或文件

#### 9.1.3.1. 删除工程文件

1. 选中要删除的工程,点击">>"按钮,在新的菜单键中的编辑中选中删除按钮,弹出删除工程对话框。点击确定按钮,即可删除工程。





#### 工程及文件管理



图 9.7 删除工程对话框

2. 当前选中的工程处于加载状态,不能进行删除操作。



图 9.8 加载状态不能删除工程提示

#### 9.1.3.2. 删除程序文件

1. 选中要删除的文件,点击">>"按钮,在新的菜单键中按下"删除"按钮,弹出删除程序文件对话框,点击确定按钮,即可删除程序文件:



图 9.9 删除文件对话框

2. 当前选中的工程文件处于加载状态,不能进行删除操作。



图 9.10 加载状态不能删除文件提示









### 9.2.1.复制/粘贴工程

- 1. 将光标移至要复制的工程,点击">>"按钮,在新的菜单键中按下"复制"按钮,复制工程成功。
  - 2. 点击"粘贴"按钮,弹出粘贴对话框:




图 9.11 粘贴工程对话框

3. 在新文件名处输入新的工程名,如 newProj:



图 9.12 粘贴工程对话框

4. 点击确定按钮, 粘贴工程成功, 在工程列表中出现名为 newProj 的工程:



图 9.13 工程列表中粘贴工程后的示意

## 9.2.2.复制程序文件

- 1. 将光标移至要复制的程序文件上,点击 ">>"按钮,在新的菜单键中按下 "复制"按钮,如复制 test 工程下的 newProg 程序文件,复制程序文件成功。
  - 2. 按下"粘贴"按钮,弹出粘贴程序文件对话框:





#### 工程及文件管理

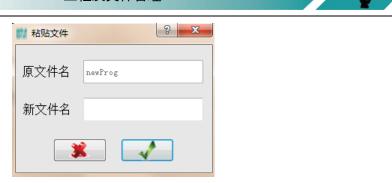



图 9.14 粘贴程序文件对话框

3. 在新文件名出输入新的文件名,如 progPaste:



图 9.15 输入粘贴文件的新文件名

4. 点击确定按钮,在 test 工程下出现名为 progPaste 的程序文件:



图 9.16 工程列表中粘贴文件后的示意

5. 粘贴程序文件只能粘贴到与原文件相同的工程下,不支持粘贴到其他工程:

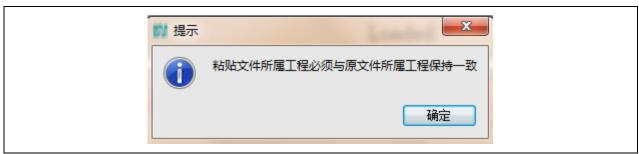
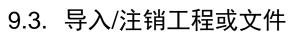




图 9.17 粘贴文件不能粘贴到其他工程的提示







## 9.3.1.导入/注销工程

选中要导入的工程,点击"导入",等待工程导入完成,如工程过大,导入需要一定时间:当状态 栏中出现Loaded,说明加载工程成功。

| 工程列表      | 导入状态自动运行状态 |
|-----------|------------|
| GLOBAL    |            |
| test      |            |
| newProg   |            |
| progPaste |            |
| newProj   |            |
| newProg   |            |

图 9.18 选择需要导入的工程

注销过程和导入相反, 选中要注销的工程(只有当前处于加载的工程才可以被注销), 点击"注销"按钮, 当状态栏中的Loaded变为"---"时, 注销工程成功。

## 9.3.2.导入/注销程序文件

当工程处于加载状态时,该工程下的程序文件才可以进行导入和注销操作。

选择要导入的程序文件,点击"打开"按钮,当界面转入指令编辑界面时,表明打开程序文件成功。 返回工程列表,可以看到文件后面的导入状态已经变为了"Loaded"。

注销文件和导入相反,点击需要注销的文件,点击底部"注销"按钮,当导入状态变为"\_\_\_\_"后,表示注销成功。



7



# 10. 程序指令编辑

在进行指令编辑之前,必须加载工程和文件,这样才可以对程序文件中的指令进行编辑,可参考 8.4 中的导入工程和程序文件步骤,对工程和程序文件进行导入。

# 10.1.新建指令

## 10.1.1. 新建运动指令

#### 10.1.1.1. MovJ

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮 , 选择其他,进入指令类型 选择界面:



图 10.1 新建指令选择界面

2. 选择要加入的指令类型,如运动指令中的 MovJ 指令,点击确定,进入指令编辑界面:



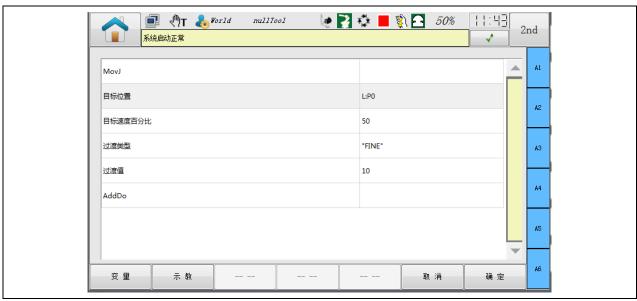



图 10.2 指令编辑界面

- 3. 该指令预生成一个名为 P0 的关节型位置变量,指令速度为全局速度的 50%,过渡类型为 fine (无过渡)。
- 4. 选择 P0 点所在栏,点击左下角"变量"菜单按钮,改变运动指令的目标点,也可以点击 P0 所在栏,在弹出的下拉框中选择已经存在的位置点作为目标点,如果选择当前的目标点不是已存在的,则需要点击示教按钮,例如创建名为 P2 的位置点变量。
  - 5. 点击 50 所在的栏,改变运动指令的速度(速度范围 0-100),点击确定按钮。

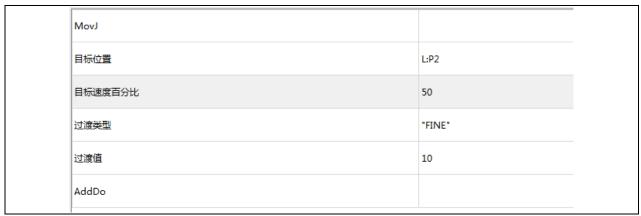



图 10.3 指令编辑页面中改变速度后的显示示意

6. 点击 fine 所在的下拉菜单按钮,改变运动指令的过渡类型,可选择"FINE"(无过渡)、"RELATIVE" (相对过渡)和"ABSOLUTE"(绝对过渡)。如选择"RELATIVE",并更改所需过渡值为 100:





| MovJ              |            |  |
|-------------------|------------|--|
| 目标位置              | L:P2       |  |
| 目标速度百分比           | 50         |  |
| 过渡 <del>类</del> 型 | "RELATIVE" |  |
| 过渡值               | 100        |  |
| AddDo             |            |  |

图 10.4 指令编辑页面中改变过度类型的显示示意

AddDo 指令暂时不开放,请勿设置:

7. 点击确定按钮,新建指令完成,生成 MovJ (P2, V50, "RELATIVE", C100):



图 10.5 新建指令完成后的显示示意

新建 MovL、MovC 指令与 MovJ 新建步骤相同。

#### 10.1.1.2. 新建 GetCurCartPos 指令



图 10.6 GetCurCartPos 指令编辑界面

预生成一个名为 P0 的坐标系型位置变量。选择 P0 点所在栏,点击左下角"变量"菜单按钮,改变运动指令的目标点,也可以点击 P0 所在栏,在弹出的下拉框中选择已经存在的位置点作为目标点,如果选择当前的目标点不是已存在的,则需要点击示教按钮。

点击确认按钮,即可生成该条指令。



图 10.7 GetCurCartPos 指令

#### 10.1.1.3. 新建 GetCurJointPos 指令



图 10.8 GetCurJointPos 指令编辑界面









预生成一个名为 P0 的关节坐标系型位置变量。选择 P0 点所在栏,点击左下角"变量"菜单按钮,改变运动指令的目标点,也可以点击 P0 所在栏,在弹出的下拉框中选择已经存在的位置点作为目标点,如果选择当前的目标点不是已存在的,则需要点击示教按钮。

点击确认按钮,即可生成该条指令。

0006 GetCurJointPos(P0)

图 10.9 GetCurCartPos 指令

#### 10.1.1.4. 新建 GlobalOverrideSet 指令

新建全局速度指令,该指令用于设置全局速度,默认50的速度,可设置的速度区间是0~100。



图 10.10 GlobalOverrideSet 指令编辑界面

点击确认后,即可生成该条指令。



图 10.11 GlobalOverrideSet 指令

#### 10.1.1.5. 新建 StopRobot 指令

该指令用于停止机器人,没有参数。



图 10.12 StopRobot 指令编辑界面

完成编辑后,点击确认,即可生成该条指令。



图 10.13 StopRobot 指令

新建 GetCurJointPos 指令与 GetCurCartPos 指令新建步骤相同。

## 10.1.2. 新建控制指令

1. 新建 IF 指令







a) 选中要加入的指令位置,点击新建按钮 , 选择其他, 进入指令选择界面:



图 10.14 新建控制指令选择界面

b) 如选择控制指令中的 IF THEN ENDIF 指令,点击确定按钮:



图 10.15 选择控制指令后的显示示意

弹出指令编辑界面,生成一条默认的 IF 指令,为 IF 1 > 0 Then,且焦点在 1 上。

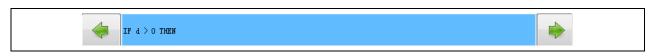
c) 点击 right 按钮,编辑焦点向右移动:



图 10.16 控制指令的编辑(右移)示意

d) 点击左移箭头按钮,编辑焦点向左移动。




图 10.17 控制指令的编辑(左移)示意

e) 点击修改按钮,如果当前编辑焦点里是数值类型则只能修改为数值,如果当前编辑焦点是变量,则只能选择当前存在的变量:



图 10.18 变量选择页面的显示示意

f) 选择进行替换的变量,如选中 d 变量,点击确定按钮:









#### 图 10.19 选择变量后的显示示意

变量数值

在编辑焦点内的 1 变为 d, (同样方法替换掉 0 处的内容)



图 10.20 修改为数值后的显示示意

在编辑焦点内的 d 变为 50。

h) 指令编辑完成后,点击确定按钮,会在指令界面中成成对应的 IF 指令,如分别把 1 和 0 替换为 d 和 50,则生成指令如下:

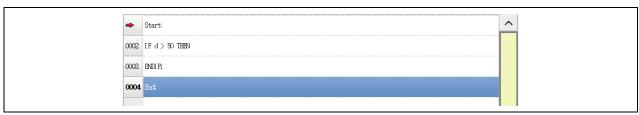



图 10.21 编辑完成控制指令后的显示示意

2. 新建 WHILE 指令

While 指令和 IF 指令操作方式相同,此处不再进行描述。

- 3. 新建 Call 指令
- a) 在指令选择界面中选中指令类型,如 Call 类型,点击确定按钮:



图 10.22 Call 指令编辑界面

b) 点击 progname 所在的右侧空白格,选择要调用的程序,在下拉菜单只显示当前工程中的所有程序,这里选择 newProg:

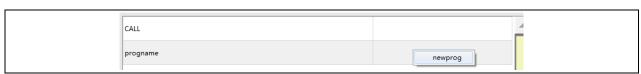



图 10.23 Call 指令的编辑示意

c) 点击确定按钮, 生成 call 指令:



图 10.24 Call 指令编辑完成后的显示示意

4. 新建 Label 指令







a) 在指令选择界面中选中指令类型,如 Lable 类型,点击确定按钮,弹出软键盘,输入 st,点击软键盘上的确定按钮,标号名变为 st:



图 10.25 Label 指令编辑界面

b) 点击确定按钮,生成 Label 指令:



图 10.26 Label 指令的显示示意

- 5. 新建 Goto 指令
- a) 在指令选择界面中选中指令类型,如 Goto 类型,点击确定按钮:



图 10.27 Goto 指令的编辑界面

生成 goto 指令, start 为程序的第一个 label。

b) 点击 label 右侧空白格,选择 label 标号,在下拉菜单只显示当前文件中的所有 label 标号,这里选择 st(第 5 步新建的 label))。



图 10.28 Goto 指令的编辑界面

c) 点击确定按钮, 生成 goto 指令:



图 10.29 Goto 指令编辑完成后的显示示意

- 6. 新建 RUN 指令
- a) 在指令选择界面中选择指令类型,如 Run 类型,点击确定按钮:



图 10.30 RUN 指令的编辑界面

b) 点击 progname 右侧空白处,选择同一工程下所需要执行的程序文件:





图 10.31 RUN 指令的选择程序文件界面

c) 如选择"newprog",点击确定,生成 RUN 指令:



图 10.32 RUN 指令编辑完成后的显示示意

7. 新建 KILL 指令

KILL 指令和 RUN 指令用法类似,不再累述。

8. 新建赋值指令 AssignInst

表达式指令和 IF 指令操作方式类似,这里不再累述。



图 10.33 AssignInst 指令编辑界面

## 10.1.3. 新建 IO 指令

#### 10.1.3.1. 新建数字量输出指令(SetDO)

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮,进入指令类型选择界面:

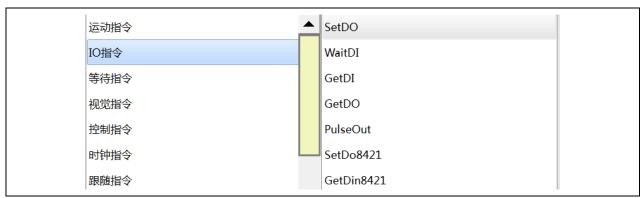



图 10.34 I/O 指令类型的选择界面

2. 在弹出的新界面中选中指令类型,如 SetDO 类型。







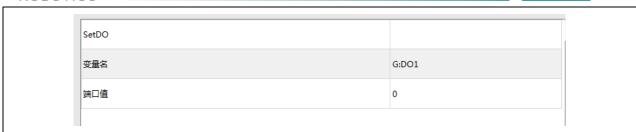



图 10.35 I/O 指令的编辑界面示意

3. 在新建此变量之前需要新建 IO 数据类型的变量,点击 G:DO1 处选择变量,该变量是对应端口号。由 G:DO1 变为 L:IOO。注意, IO 指令在使用前需要先新建所需的 IO 变量:

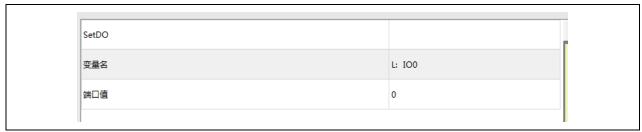



图 10.36 更改端口变量的显示示意

4. 点击设置端口值所在的列表,改变 IO 端口的初始值:

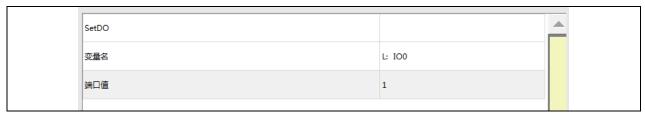



图 10.37 更改设置端口值后的显示示意

数字量 IO 值只能为 0 或 1, 因此点击端口值所在栏目, 在弹出的数字键盘中只能选择 0 或 1。

5. 点击确定按钮,生成指令如下:



图 10.38 编辑完成 I/O 指令后的显示示意

#### 10.1.3.2. 新建数字量输入指令(WaitDI)

1. 在指令选择界面中选中指令类型,如 WaitDI 类型。

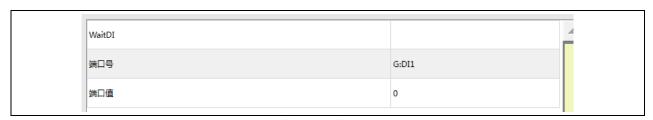



图 10.39 新建数字量输入指令编辑界面

2. 点击 G:DI1 处,在弹出的下拉框中选择合适的端口号,即可选择端口号。注意,IO 指令在使用前需要先新建所需的IO 变量,变量名由G:DI1 变为L:IO0







图 10.40 更改端口变量后的显示示意

3. 点击设置端口值所在的列表,改变 IO 端口的等待值:



图 10.41 更改设置端口值后的显示示意

数字量 IO 值只能为 0 或 1, 同 SetDO 的操作。

4. 点击确认按钮,生成指令如下:



图 10.42 编辑完成后的指令显示示意

#### 10.1.3.3. 新建 GetDI 指令

1. 在指令选择界面中选中指令类型,如 GetDI 类型。对应参数为 DIN 类型。



图 10.43 新建 GetDI 指令编辑界面

2. 点击 DIN 变量右侧空白格处,选择要获取的输入值对应的 DIN 变量,如 DINO。



图 10.44 新建 GetDI 指令编辑界面

3. 点击确定按钮生成指令。



图 10.45 编辑完成后的指令显示示意

新建 GetDO 指令和 GetDI 指令操作类似,参数为 DOValue 类型。







#### 10.1.3.4. 新建 PulseOut 指令

在选择指令界面中,选择 PulseOut 类型指令,点击确定:

| PulseOut |       |
|----------|-------|
| 端口       | G:DO1 |
| 值        | 1     |
| 持续时间     | 1000  |
| 中断设置     | 0     |
|          |       |

图 10.46 新建 PulseOut 指令编辑界面

新建操作与 SetDO 指令操作类似,不再累述。

#### 10.1.3.5. 新建 SetDo8421 指令

1. 在指令选择界面中选中指令类型,如 SetDo8421 类型。

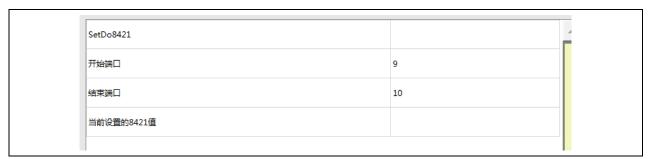



图 10.47 新建 SetDo8421 指令编辑界面

2. 参数 1 为开始端口, 参数 2 为结束端口, **注: SetDo8421 指令在使用前需要先新建所需的 8421 输出 IO 变量**,点击当前设置 8421 值处,选择对应的变量值。

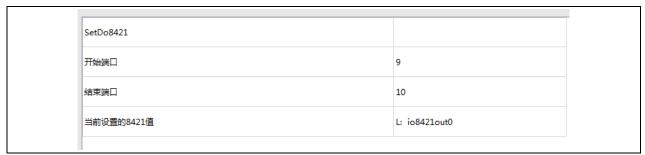



图 10.48 更改变量后的显示示意

3. 点击确定,生成指令。

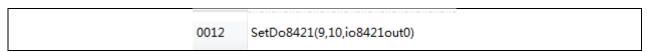



图 10.49 编辑完成后的指令显示示意

新建 GetDin8421 指令和 SetDo8421 指令类似,此处不再累述。





# 

## 10.1.4.1. 新建 wait 指令

1. 在指令选择界面中选中指令类型,如 Wait 类型,点击确定按钮,弹出指令编辑界面,生成一条默认的 Wait 指令,时间参数为 1000:



图 10.50 Wait 指令编辑界面

2. 点击 1000 所在的下拉列表框, 在弹出的数字输入框中输入 2000, 点击确定按钮, 单位为毫秒:

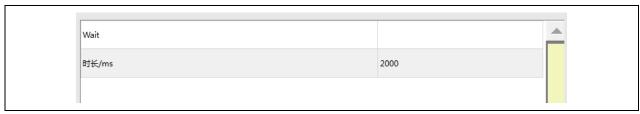



图 10.51 Wait 指令的编辑示意

3. 击确定按钮, 生成 Wait 指令:



图 10.52 Wait 指令编辑完成的显示示意

#### 10.1.4.2. 新建 waitTime 指令

1. 在新建指令界面选择等待指令中的 waitTime 指令,点击确定会出现如下界面。

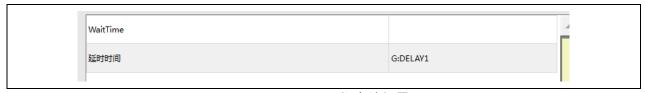



图 10.53 WaitTime 指令编辑界面

2. 在新建此指令之前需要新建系统数据类型中的延时时间变量,点击延时时间右侧空白处选择延时时间。如 G:DELAY1 变成新建的 L:DELAY1。



图 10.54 WaitTime 指令编辑界面











图 10.55 WaitTime 指令新建完成

### 10.1.5. 新建视觉指令

视觉指令的使用需要配合视觉软件及外配摄像头一起使用,并需要提前进行视觉的标定。以下两条指令必须按顺序进行调用。视觉使用前需要机器人标定一个用户坐标系,此坐标系需与视觉的坐标系一致。

#### 10.1.5.1. TrigVision 指令

触发视觉系统进行一次拍摄,目前默认使用通道 1,使用时指令为 TrigVision(1);在指令选择界面,选择 TrigVision 指令。

#### 10.1.5.2. Wait VisionObject(time, vRet)指令

触发视觉系统进行拍摄后, 等待视觉处理完成, 并获取其返回值。

time:指定等待时间,单位为 ms;

val:用于保存视觉捕捉到的物体个数,如果指定时间视觉没有捕捉到目标,val.num值(捕捉到物体的个数)为零。

选择 WaitVisionObject 指令,在指令编辑界面,设置好时间和物体个数,点击确定按钮,新建指令完成。

#### 10.1.5.3. GetVisionPos(vPos, VisionID0)指令

用于获取视觉返回的用户坐标系下的(x,y)坐标位置,保存在 vPos 中,VisionID0 是用于识别不同物体的编号。

选择指令后,直接就会生成 GetVisionPos 指令。

## 10.1.6. 新建时钟指令

#### 10.1.6.1. 新建 ClockStart 指令

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮,进入指令类型选择界面。





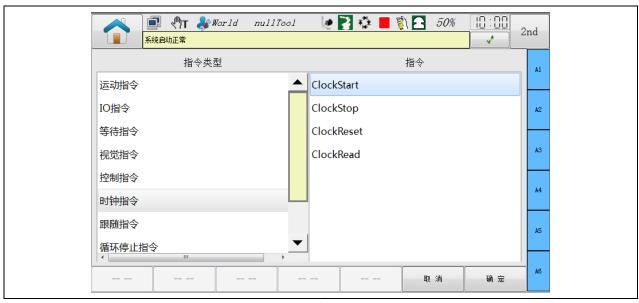



图 10.56 时钟指令类型的选择界面

2. 在弹出的新界面中选中时钟指令类型,点击右侧 ClockStart 按钮。



图 10.57 ClockStart 指令类型的选择界面

3. 指令添加到程序文本,完成添加。



图 10.58 ClockStart 指令编辑完成显示示意

新建 ClockStop 指令与 ClockStart 操作一致,不再累述。 新建 ClockRestart 指令与 ClockStart 操作一致,不再累述。

#### 10.1.6.2. 新建 ClockRead 指令

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮,进入指令类型选择界面,并选择左侧的 ClockRead()指令,更改变量为所需变量 L:



图 10.59 ClockRead 指令编辑界面

2. 添加带有变量的 ClockRead()指令到文本中,完成指令的添加。





图 10.60 ClockRead 指令新建完成

## 10.1.7. 新建跟随指令

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮,进入指令类型选择界面,并选择左侧的跟随指令类型,右侧选择 Tracking 指令。

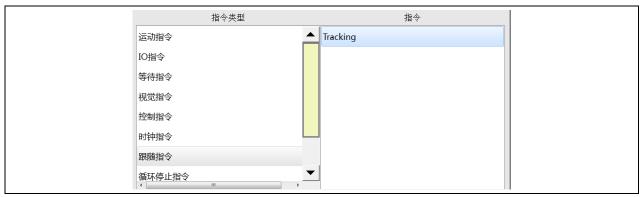



图 10.61 Tracking 指令编辑界面

2. 在右边编辑框中添加变量,然后点击确定完成指令的添加。



图 10.62 Tracking 指令类型的选择界面

3. 指令添加到程序文本,完成添加。



图 10.63 Tracking 指令添加完成示意

# 10.1.8. 新建自定义指令

#### 10.1.8.1. 新建 SetTool 指令

1. 在新建指令中选择自定义指令, SetTool 指令, 点击确定;



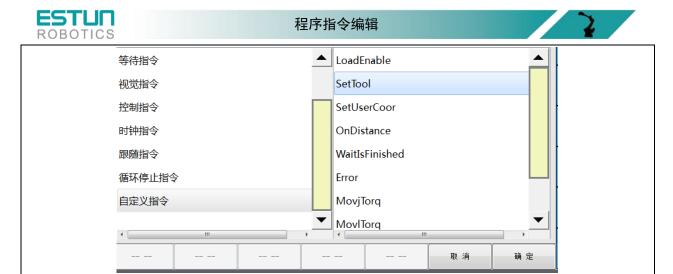



图 10.64 SetTool 指令类型的选择界面

2. 在弹出的界面中选择需要的工具,并选择合理参数,确认即可新建完成;

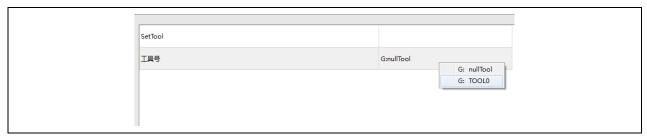



图 10.65 Tool 选择

3. 在文本编辑中完成添加 SetTool 指令。



图 10.66 新建完成的 SetTool 指令

#### 10.1.8.2. 新建 SetUserCoor 指令

1. 在新建指令中选择自定义指令, SetUserCoor 指令, 点击确定;

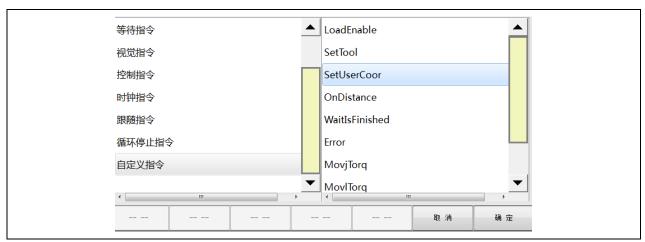



图 10.67 SetUserCoor 选择

2. 在参考坐标系中选择用户自定义的坐标系 UserCoor01,并点击确定。







图 10.68 SetUserCoor 参数设定界面

3. 指令及其参数添加完成。




图 10.69 SetUserCoor 指令及参数添加完成示意

#### 10.1.8.3. 新建 LoadEnable 指令

1. 在指令编辑界面,选中要加入的指令位置,点击新建按钮 , 进入指令类型选择界面:



图 10.70 新建 LoadEnable 指令界面

2. 将控制负载使能与否由"false"更改为"ture"。点击完成,实现添加。

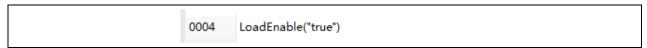



图 10.71 新建指令完成后的显示示意

#### 10.1.8.4. 新建 Error 指令

1. 在新建指令中选择自定义指令, Error 指令, 点击确定;

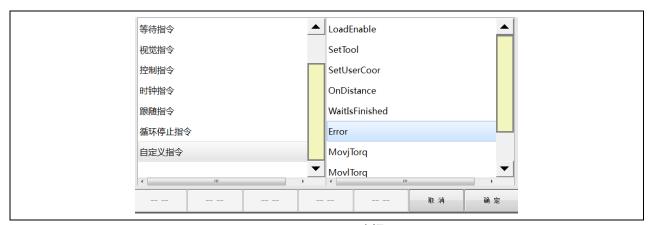



图 10.72 Error 选择

2. 该指令没有参数,点击确定,即可新建完成该条指令。





图 10.73 新建 Error 指令界面

取消

确定

#### 10.1.8.5. 新建 WaitIsFinished 指令

变 重

1. 在新建指令中选择自定义指令, WaitIsFinished 指令, 点击确定;

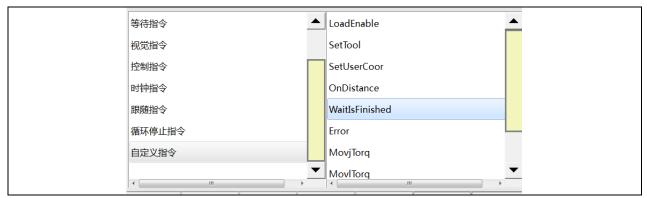



图 10.74 WaitIsFinished 选择

2. 该指令没有参数,点击确定,即可新建完成该条指令。



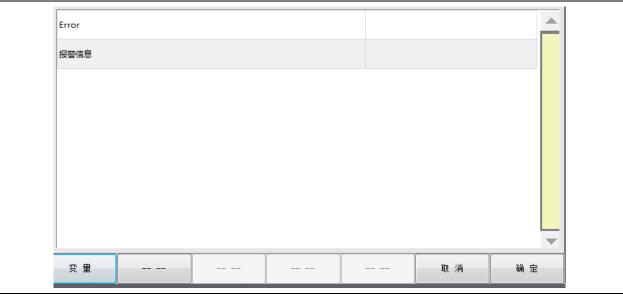



图 10.75 新建 WaitIsFinished 指令界面

#### 10.1.8.6. 新建 MovjSearch 指令

在新建指令中选择自定义指令, MovjSearch 指令, 点击确定;

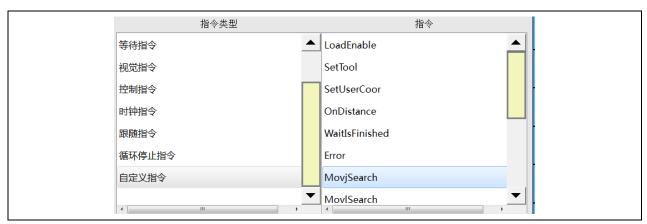



图 10.76 MovjSearch 选择

2. 该指令的目标位置、目标速度、过渡类型、过渡值的设置与 MovJ 指令的设置相同,需要注意 的是要选择中断类型、中断值和返回结果值。中断类型有两种触发方式, IO 触发和力矩触发。点击"TYPE" 处可选择类型。





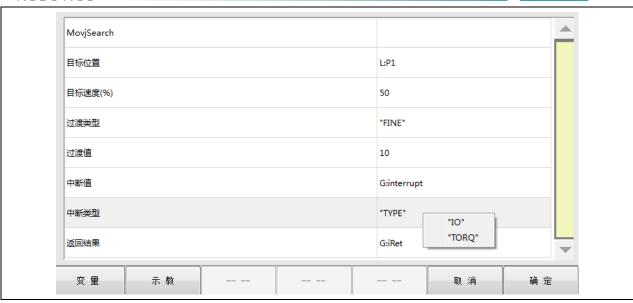



图 10.77 新建 MovjSearch 指令界面

3. IO 中断和力矩中断采用的是同一种变量类型 INTERRUPT 类型, 注:该指令中不可以点击左下角变量按钮去新建变量名,如果下拉弹框没有 INTERRUPT 变量,则需要去变量界面的系统数据类型中新建该类型的变量。

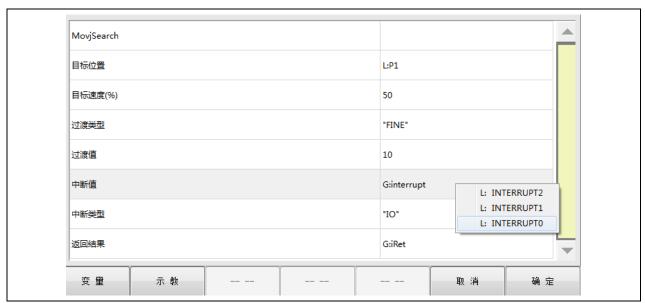



图 10.78 选择中断值

4. 选择完毕后,点击确定,即可新建完成。MovlSearch、MovcSearch 新建指令方法类似。



图 10.79 新建指令完成后的显示示意图

#### 10.1.8.7. 新建 GetPalletPos 指令

1. 在新建指令中选择自定义指令, GetPalletPos 指令, 点击确定;





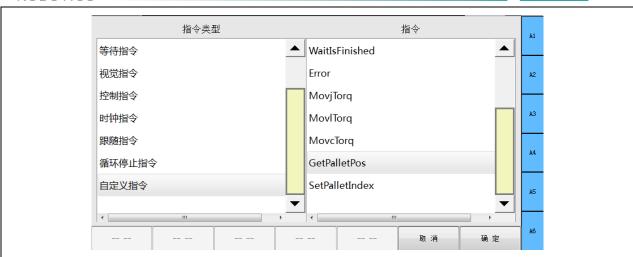



图 10.80 GetPalletPos 选择

2. 预生成如下图的指令:



图 10.81 新建 GetPalletPos 指令界面

3. 点击目标位置所在栏,在弹出的下拉框中可选择已存在的位置点,也可以点击变量,在弹出的输入框中输入新变量名,再点击示教即可。例如修改为 P4

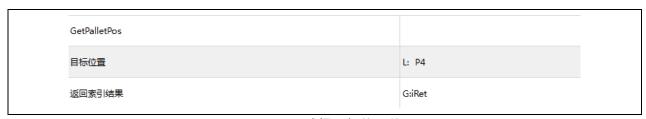



图 10.82 选择目标位置值

4. 点击返回索引结果所在栏,在下拉弹框中选择已存在的返回值类型数据,若没有该类型变量,需要新建该变量类型,



图 10.83 选择返回索引值

5. 点击确定,新建好该条指令

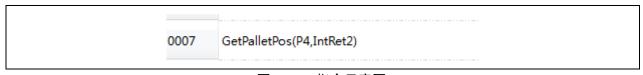



图 10.84 指令示意图









#### 10.1.8.8. 新建 SetPalletIndex 指令

1. 在新建指令中选择自定义指令, SetPalletIndex 指令, 点击确定;

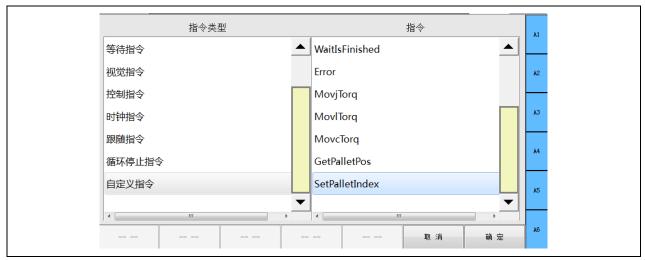



图 10.85 SetPalletIndex 选择

2. 预生成如下图的指令:



图 10.86 新建 SetPalletIndex 指令界面

3. 点击索引所在栏,在弹出的输入框中输入索引值,点击确定即可。例如修改为 10,注:需要根据码垛的实际需求确定,不可超过工件个数。



图 10.87 修改索引值

4. 点击确定,即可生成该指令。



图 10.88 指令示意图



# 10.2. 修改指令

## 10.2.1. 修改运动指令

#### 10.2.1.1. 修改 MovJ 指令

1. 在指令编辑界面中选中要修改的指令,如 MovJ (P1, V50, fine),点击修改按钮:

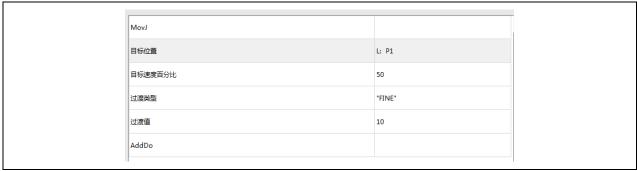



图 10.89 修改运动指令界面

- 2. 击示教按钮,修改当前点 P1 的值, P1 记录的位置为当前机器人的位置值:
- 3. 点击 P1 点所在的下拉列表,在下拉菜单中选择其他的位置点,如选择 P5 点:

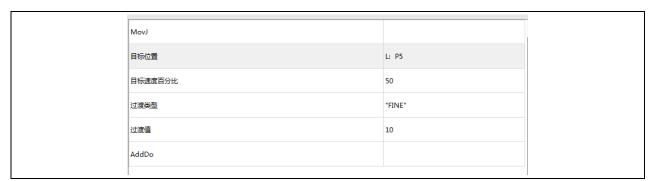



图 10.90 更改目标位置后的显示示意

4. 点击 V50 所在的下拉列表,在弹出的对话框中输入 20,点击确定按钮:

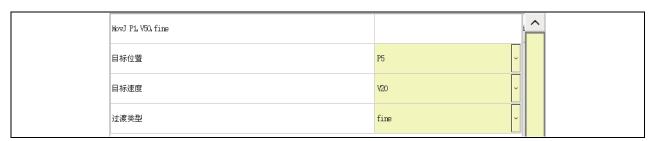



图 10.91 更改目标速度的显示示意

目标速度由 V50 变为 V20。

5. 点击 FINE 所在的下拉列表,选择 RELATIVE:







| MovJ    |            |  |
|---------|------------|--|
| 目标位置    | L:P5       |  |
| 目标速度百分比 | 20         |  |
| 过渡类型    | "RELATIVE" |  |
| 过渡值     | 10         |  |
| AddDo   |            |  |

图 10.92 更改过渡类型后的显示示意

过渡类型由 FINE 变为 RELATIVE。

6. 点击过渡值所在栏,在弹出的对话框中输入20:

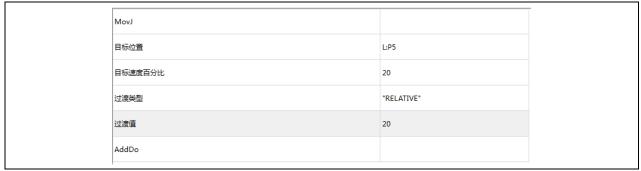
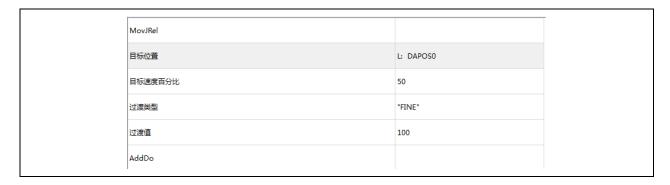



图 10.93 更改过渡值后的显示示意

过渡值由 C10 变为 C20。

7. 点击确定按钮,指令修改成功:




图 10.94 修改指令完毕后的显示示意

指令变为 MovJ (P5, V20, "RELATIVE",C20)

MovL、MovC、MOvCric 指令的修改方式与 MovJ 相同,在此就不做描述。

#### 10.2.1.2. 修改 MovJRel 指令

1. 在指令编程界面中选中要修改的指令,如 MovJRel (DAPOS0, V50, FINE),点击修改按钮:









#### 图 10.95 修改运动指令界面

2. 点击 DAPOS0 点所在的下拉列表,在下拉菜单中选择其他的位置点,如选择 DAPOS1 点。注意,只可选择已存在的点,不能点击左下角变量按钮进行新建:

| MovJRel |           |
|---------|-----------|
| 目标位置    | L: DAPOS1 |
| 目标速度百分比 | 50        |
| 过渡类型    | "FINE"    |
| 过渡值     | 100       |
| AddDo   |           |

图 10.96 更改目标位置后的显示示意

3. 点击 V50 所在的下拉列表,在弹出的对话框中输入 20,点击确定按钮:

| MovJRel |           |
|---------|-----------|
| 目标位置    | L: DAPOS0 |
| 目标速度百分比 | 20        |
| 过渡类型    | "FINE"    |
| 过渡值     | 100       |
| AddDo   |           |

图 10.97 更改目标速度的显示示意

目标速度由 V50 变为 V20。

4. 点击 FINE 所在的下拉列表,选择 RELATIVE:

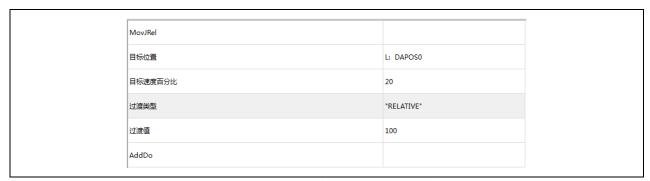



图 10.98 更改过渡类型后的显示示意

过渡类型由 FINE 变为 RELATIVE。

5. 点击过渡值所在栏,在弹出的对话框中输入20:





| KOBOTICS |         |            |  |
|----------|---------|------------|--|
|          | MovJRel |            |  |
|          | 目标位置    | L: DAPOS1  |  |
|          | 目标速度百分比 | 20         |  |
|          | 过渡类型    | "RELATIVE" |  |
|          | 过渡值     | 20         |  |
|          | AddDo   |            |  |

图 10.99 更改过渡值后的显示示意

过渡值由 C100 变为 C20。

6. 点击确定按钮,指令修改成功:

MovJRel(DAPOS1,V20,"RELATIVE",C20)

图 10.100 修改指令完毕后的显示示意

指令变为 MovJRel(DAPOS1, V20, "RELATIVE",C20)

MovLRel 指令的修改和 MovJRel 相同,在此就不在描述。

#### 10.2.1.3. 修改 GetCurCartPos 指令

1. 在指令编程界面中选中要修改的指令,如 GetCurCartPos (P0),点击修改按钮:



图 10.101 修改运动指令界面

- 2. 点击左下角变量按钮,在弹出的输入框中输入新变量名,需要再点击示教按钮进行示教。
- 3. 推荐点击 P0 点所在的下拉列表,在下拉菜单中选择其他的位置点,如选择 P9 点:



图 10.102 更改目标位置后的显示示意

4. 点击确定按钮,指令修改成功:

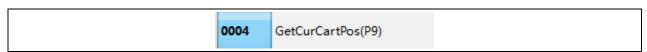



图 10.103 修改指令完毕后的显示示意

指令变为 GetCurCartPos(P9)

GetCurJointPos 指令的修改和 GetCurCartPos 相同,在此就不在描述。







### 10.2.2. 修改控制指令

#### 10.2.2.1. 修改 IF 指令

1. 在指令列表里选择要修改的 IF 指令,点击修改按钮,进入指令修改界面:



图 10.104 修改控制指令界面

2. 添加判断项,点击添加按钮,添加判断项,默认的为 AND 运算,变量对应分别为 1 和 0:



图 10.105 添加判断项后的显示示意

3. 修改判断项, 把修改光标移动到 d 处, 点击修改按钮, 弹出变量选择界面, 选择变量, 如 c, 点击确定按钮, 变量 b 变为 c:



图 10.106 修改判断项变量后的显示示意

同上,把光标移到 d 处后,点击替换按钮,在弹出的菜单中选择变量、数值或函数,可以替换更改 d 变量。

移动光标到>号处,点击修改按钮,在弹出的判断符选择界面中判断符,如不等于<>,点击确定按钮,判断符由>变为<>:



图 10.107 修改关系判断后的显示示意

把光标移动到 AND 运算符处,点击修改按钮,在弹出的运算符修改界面中选择运算符,如 or,点击确定按钮,运算符由 AND 变为 OR:



图 10.108 修改逻辑判断后的显示示意

其他项的修改类似。

4. 删除判断项, 在把光标移到 36 > 10 上的任意一项, 点击删除按钮, 即可删除 36 > 10:



图 10.109 删除判断项后的显示示意 1

在把光标移到 OR 1 > 0 上的任意一项,点击删除按钮,即可删除 OR 1 > 0:



图 10.110 删除判断项后的示意 2

其他项的删除类似。

#### 10.2.2.2. 修改 WHILE 指令功能

修改方法与 IF 指令类似,在此不做描述。

#### 10.2.2.3. 修改 CALL 指令功能

1. 在指令列表中选择要修改的 CALL 指令,点击确定按钮,进入指令修改界面:

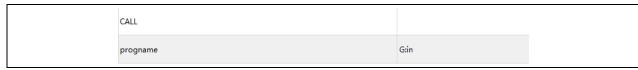



图 10.111 CALL 指令的修改界面

2. 点击 in 所在的下拉列表行,在弹出的菜单中选择其他的文件,如 main,点击确定按钮,调用的文件由 in 变为 main:



图 10.112 CALL 指令修改后的显示示意

#### 10.2.2.4. 修改 LABEL 指令功能

1. 在指令列表中选择要修改的 LABEL 指令,点击修改按钮会出现软键盘界面,输入要修改的名称。



图 10.113 LABEL 指令的修改界面

2. 点击确定,对 LABEL 的名称进行修改:



图 10.114 Label 指令修改后的显示示意







# 3

#### 10.2.2.5. 修改 GOTO 指令功能

1. 在指令列表中选择要修改的 GOTO 指令,点击确定按钮,进入指令修改界面:



图 10.115 GOTO 指令的修改界面

2. 点击 start 所在行的下拉菜单,在弹出的菜单中选择 label,如选择 zz, 点击确定按钮, Label 由原来的 Start 变为 zz:




图 10.116 GOTO 指令修改后的显示示意

#### 10.2.2.6. 修改 RUN 指令

修改方法与 GOTO 指令类似,在此不做描述。

#### 10.2.2.7. 修改 KILL 指令

修改方法与 GOTO 指令类似,在此不做描述。

#### 10.2.2.8. 修改表达式指令

修改方法与 IF 指令类似,在此不做描述。

### 10.2.3. 修改 IO 指令

#### 10.2.3.1. 修改数字量输出指令(SetDO)

1. 在指令列表中选择要修改的 SetDO 指令,如点击修改按钮,进入指令编辑界面:



图 10.117 SetDO 指令的修改界面

2. 点击端口号所在栏,在弹出的下拉框中选择 DO14,同时在端口值(0或1)中设定,点击确定按钮。实现修改端口号和端口值。









图 10.118 修改端口变量名后的显示示意

3. 点击设置端口值所在的列表,改变 IO 端口的初始值:



图 10.119 修改映射端口号后的显示示意

数字量 IO 值只能为 0 或 1, 如当前状态为 0 , 则点击后变为 1; 如当前状态为 1,则点击后变为 0。

4. 设置好变量并创建指令。



图 10.120 SetDO 指令修改后的显示示意

#### 10.2.3.2. 修改数字量输入指令(WaitDI)

1. 在指令列表中选择要修改的 WaitDI 指令,点击修改按钮,进入指令修改界面:



图 10.121 WaitDI 指令的修改界面

2. 点击端口号所在栏,在弹出的下拉框中选择合适的 IO 端口,改变等待的 IO 端口值以及端口号。



图 10.122 修改端口变量名后的显示示意

3. 点击映射端口 DI[10]所在的下拉菜单,端口预设值为 1,点击确定,添加到文本程序中:









图 10.123 修改映射端口号后的显示示意

#### 10.2.3.3. 修改获取输入指令 GetDI

1. 在指令列表中选择要修改的 GetDI 指令,点击修改按钮,进入指令修改界面:



图 10.124 GetDI 指令的修改界面

2. 点击 DIN 变量所在栏,在弹出的下拉框中选择合适的 DIN 端口。如:修改为 DIN1。

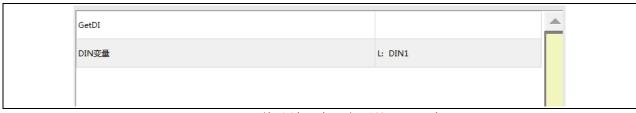



图 10.125 修改端口变量名后的显示示意

3. 点击确定,添加到文本程序中:



图 10.126 修改端口号后的显示示意

修改 GetDO 方法与 GetDI 指令类似,在此不在描述。

#### 10.2.3.4. 修改 SetDo8421 指令

1. 在指令列表中选择要修改的 SetDo8421 指令,点击修改按钮,进入指令修改界面:

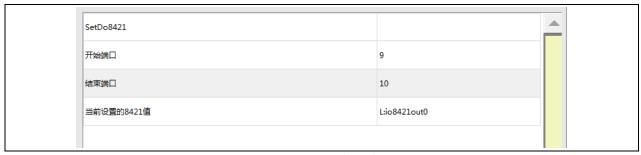



图 10.127 GetDI 指令的修改界面

2. 点击开始端口和结束端口所在栏,可以对端口进行更改。点击当前设置的 8421 值,可以更改当前类型的变量。如:将结束端口 10 改为 12。







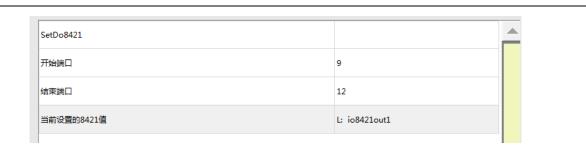



图 10.128 修改端口号后的显示示意

3. 点击确定,添加到文本程序中:



图 10.129 修改程序完成

修改 GetDin8421 指令方法与 SetDo8421 指令类似,在此不再累述。

### 10.2.4. 修改 Wait 指令

#### 10.2.4.1. 修改 Wait 指令功能

1. 在指令列表中选择要修改的 wait 指令,点击确定按钮,进入指令修改界面:

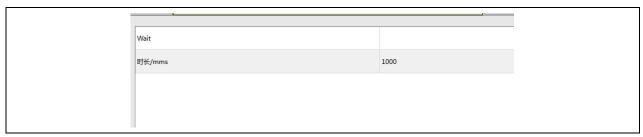



图 10.130 Wait 指令的修改界面


2. 点击 1000 所在的下拉列表行, 在弹出的对话框中输入 3000, 点击确定按钮, 时间参数由 1000 变为 3000, 单位为毫秒:



图 10.131 Wait 指令修改后的显示示意

#### 10.2.4.2. 修改 WaitTime 指令

- 1. 在指令列表中选择要修改的 WaitTime 指令,点击确定按钮,进入指令修改界面:
- 2. 点击 L:DELAYO 所在的下拉列表行,选择延时时间类型数据,更换变量。







#### 图 10.132 WaitTime 指令的修改界面

3. 点击确定,完成修改。

0007 WaitTime(DELAY0)

图 10.133 WaitTime 指令修改后的显示示意

### 10.2.5. 修改时钟指令

#### 10.2.5.1. 修改 ClocakRead 指令

1. 点击指令列表中的要修改的 ClockRead 指令, 在弹出的对话框中修改时钟变量, 点击确定按钮,



图 10.134 ClockRead 指令修改界面

2. 在 ClockRead 指令列表中修改时钟变量,将 CLK 修改为 CLOCKO:



图 10.135 ClockRead 指令实现修改

3. 完成修改变量后点击确定,在文本程序中显示,完成修改:



图 10.136 ClockRead 指令实现修改

# 10.2.6. 修改跟随指令

与修改 ClockRead 指令类似,不再累述。

### 10.2.7. 修改循环停止指令

与修改 ClockRead 指令类似,不再累述。





### 10.2.8. 修改自定义指令

#### 10.2.8.1. 修改 setTool 指令

1. 在指令列表中选择要修改的 Tool 指令,点击修改按钮,进入指令修改界面,点击工具号后的内容;



图 10.137 SetTool 修改界面的界面

2. 将工具号后的工具换为用户自定义的工具号即实现更改,点击确定即可;



图 10.138 SetTool 修改完毕后的显示示意

修改 SetUserCoor 指令与上述指令修改方法类似,不再累述。

#### 10.2.8.2. 修改 MovjSearch 指令

1. 在指令编程界面中选中要修改的指令,如 Movjsearch(P1,V50,FINE,10,tq,iRet),点击修改按钮:

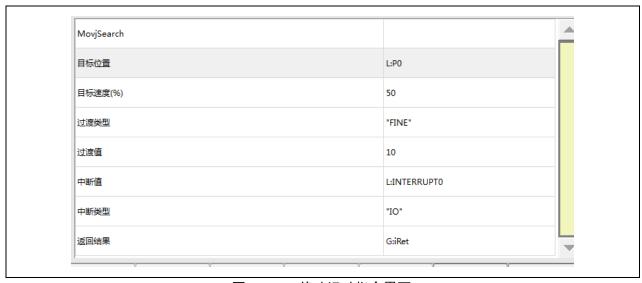



图 10.139 修改运动指令界面

2. 点击示教按钮,修改当前点 P0 的值,P0 记录的位置为当前机器人的位置值:



3. 点击 P0 点所在的下拉列表,在下拉菜单中选择其他的位置点,如选择 P4 点:

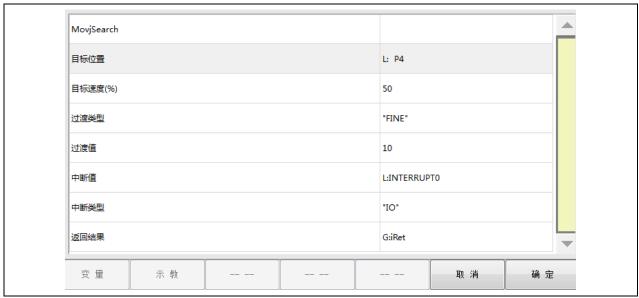



图 10.140 更改目标位置后的显示示意

4. 点击 V50 所在的下拉列表,在弹出的对话框中输入 20,点击确定按钮:



图 10.141 更改目标速度的显示示意

目标速度由 V50 变为 V20。

5. 点击 FINE 所在的下拉列表,选择 RELATIVE:



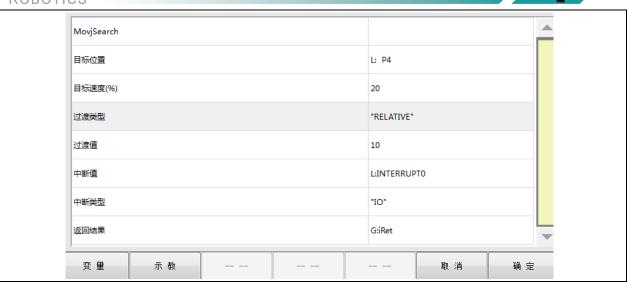



图 10.142 更改过渡类型后的显示示意

过渡类型由 FINE 变为 RELATIVE。

6. 点击过渡值所在栏,在弹出的对话框中输入20:



图 10.143 更改过渡值后的显示示意

过渡值由 C10 变为 C20。

7. 点击中断值所在栏,选择其他已经建立的中断变量,如 INTERRUPT1





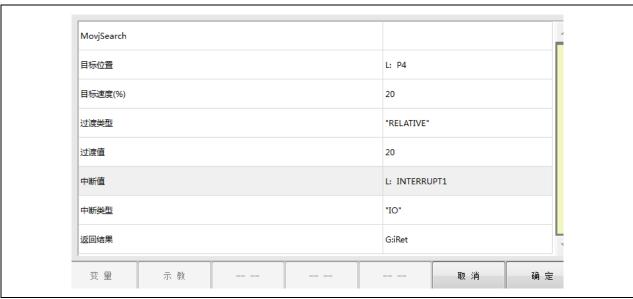



图 10.144 更改中断值后的显示示意

8. 点击中断类型,选择触发方式,如选择 Torq 类型是力矩触发。

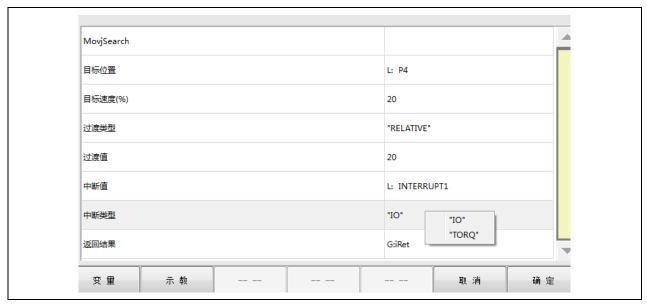



图 10.145 中断类型选择显示示意

9. 点击确定按钮,指令修改成功:



图 10.146 修改指令完毕后的显示示意

指令变为 MovjSearch(P4,V20,"RELATIVE",20,INTERRUPT1,"TORQ", iRet)。

MovlSearch、MovcSearch 指令的修改方式与 MovjSearch 相同,在此就不做描述。







#### 10.2.8.3. 修改 GetPalletPos 指令

1. 在指令列表中选择要修改的 GetPalletPos 指令,点击修改按钮,进入指令修改界面:

| GetPalletPos |           |
|--------------|-----------|
| 目标位置         | L:P4      |
| 返回索引结果       | L:IntRet2 |

图 10.147 GetPalletPos 修改界面的界面

2. 点击目标位置或返回索引结果后的内容,在弹出的下拉框中可以分别选择修改合适的值;而目标位置也可以通过点击变量按钮,新建变量名,再点击示教,即可修改完成。例如修改为 P7 点和 IntRet1:



图 10.148 GetPalletPos 修改后的显示示意

3. 点击确定按钮,指令修改成功:



图 10.149 修改指令完毕后的显示示意

#### 10.2.8.4. 修改 SetPalletIndex 指令

1. 在指令列表中选择要修改的 SetPalletIndex 指令,点击修改按钮,进入指令修改界面:

| SetPalletIndex |    |
|----------------|----|
| 索引             | 10 |

图 10.150 SetPalletIndex 修改界面的界面

2. 点击索引后的内容,在弹出的输入框中重新输入值,点击确定,即可修改完成。例如修改为5:



图 10.151 SetPalletIndex 修改后的显示示意

3. 点击确定按钮,指令修改成功:







#### 图 10.152 修改指令完毕后的显示示意

# 10.3. 复制/粘贴指令

系统支持多条指令的复制、删除与拷贝。

### 10.3.1. 复制指令

在指令列表里选中要复制的指令,如 MovJ (P1, V50, "RELATIVE",C20);点击">>"按钮,在菜单中点击复制按钮,弹出复制成功对话框.粘贴指令。

### 10.3.2. 粘贴指令

选中要粘贴的指令的位置,点击粘贴按钮,在选中的指令上方出现复制的指令。

### 10.4.删除指令

选中要删除的指令,点击">>"按钮,在新的菜单中点击删除按钮,删除选中的指令。

# 10.5. 设置程序指针


选中要设置指针的指令位置,点击设置指针按钮,指针设置成功,指令行前面的行号会变成指令,此时如果在自动模式下点击"Start"按键,程序会从此指令开始执行。



图 10.153 设置程序指针后的显示示意







# 11.1.数据管理界面

点击数据管理按钮,进入数据管理界面:

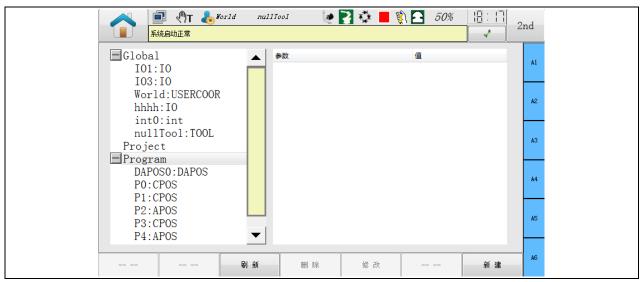



图 11.1 数据管理界面

## 11.2.新建变量

系统支持变量作用域,可以在下图界面中的【变量类型】下拉框中选择变量作用域。系统支持变量 名为字母、数字、下划线,且开头为字母。

在变量管理界面中按下"新建"键,显示新建变量如下图所示:

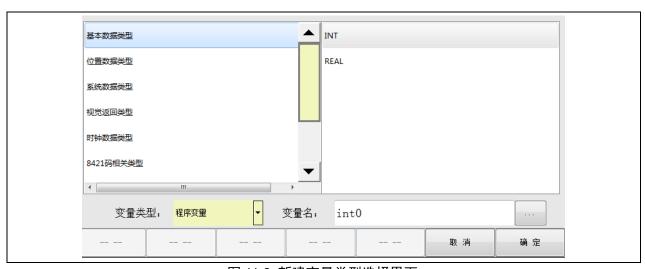



图 11.2 新建变量类型选择界面

### 11.2.1. 新建基本数据类型变量

1. 选中要新建变量的种类,如基本数据类型,选中新建变量的类型,如 REAL 类型变量,则在变







量名中默认生成一个变量名,为 real0:




图 11.3 新建默认变量名的基本数据类型变量

2. 点击确定按钮,生成 real0 的 real 型变量:

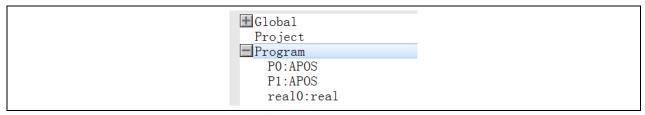



图 11.4 新建基本数据类型变量后显示示意

其他类型的基本数据变量新建步骤相同, 在此不再做描述。

### 11.2.2. 新建位置数据变量

1. 选中要新建变量的种类,如位置数据类型,选中新建变量的类型,如关节位置类型变量,则在变量名中默认生成一个变量名,为 P13。



图 11.5 新建默认变量名的位置数据变量







3

2. 点击变量名右边的…按钮,在弹出的软件盘中输入用户自定义的变量名,如 firstPos(也可使用默认名 P13):



图 11.6 新建指定变量名的位置类型变量示意

3. 点击确定按钮,在指令列表中生成名为 firstPos 的关节位置型变量,默认值为当前的机器人位置。

### 11.2.3. 新建系统数据类型

#### 11.2.3.1. 新建工具坐标(Tool)变量

选中工具坐标(Tool)变量,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 TOOL1 进行修改;



图 11.7 新建工具坐标变量的示意

#### 11.2.3.2. 新建用户坐标系变量

选中用户坐标系变量,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名进行修改;







图 11.8 新建用户坐标变量的示意

#### 11.2.3.3. 建立 IO 数据类型数据

选中 IO 数据类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 IO1 进行修改;SetDO、WaitDI、PulseOut 等指令所用变量类型。

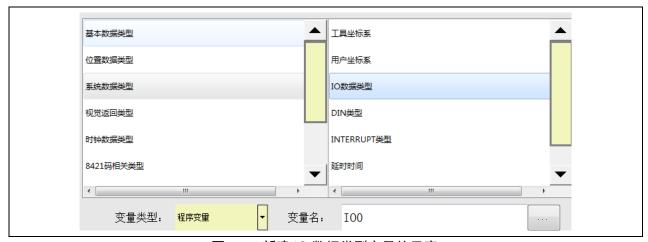



图 11.9 新建 IO 数据类型变量的示意

#### 11.2.3.4. DIN 数据类型新建

选中 DIN 类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 DIN1 进行修改。 GetDI 等指令所用变量。





图 11.10 新建 DIN 数据类型变量的示意

#### 11.2.3.5. 延时时间类型新建

选中延时时间类型,可对变量名进行修改,点击确定可完成对变量的新建。在 WaitTime 指令中使用。等待时间使用变量代替。



图 11.11 新建延时时间数据类型变量的示意

#### 11.2.3.6. 中断数据类型的新建

选中中断数据类型 INTERRUPT 类型,可对变量名进行修改,点击确定可完成对变量的新建。在 MovjSearch 等指令中使用。





图 11.12 新建中断数据类型变量的示意

选中 DOValue 类型, 可对变量名进行修改, 点击确定可完成对变量的新建。在 GetDO 指令中使用。



图 11.13 新建 DOValue 数据类型变量的示意

#### 11.2.4. 视觉返回类型

#### 11.2.4.1. 视觉识别返回值

选中视觉返回类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 VRet0 进行修改。用于指令 WaitVisionObject 返回物体识别个数。




图 11.14 新建视觉识别返回值的示意









#### 11.2.4.2. 识别物体的 ID 号

选中视觉返回类型中的识别物体的 ID 号, 点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 VisionID0 进行修改。用于指令 GetVisionPos 返回物体识别个数。

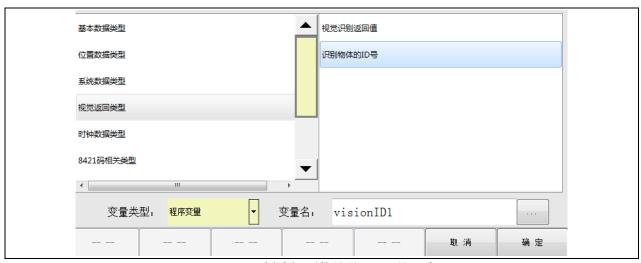



图 11.15 新建识别物体的 ID 号的示意

### 11.2.5. 时钟数据类型

选中时钟数据类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 CLOCKO 进行修改。用于指令 ClockRead 中的时钟变量,配合 ClockStart、ClockStop 使用。




图 11.16 新建时钟数据返回值的示意

### 11.2.6. 力矩数据类型

选中力矩数据类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 Torq1 进行修改。







图 11.17 新建力矩数据类型的示意

### 11.2.7. 返回值类型

选中返回值类型,点击确定按钮即可完成变量的新建。可以对系统自动生成的变量名 IntRet0 进行修改。



图 11.18 新建返回值类型的示意




图 11.19 新建工具坐标系变量示意

- 1. 选中要新建变量的种类,如工具坐标系数据类型,则在变量名中默认生成一个变量名,如 Tool2。
- 2. 点击确定按钮,就会自动生成工具变量。

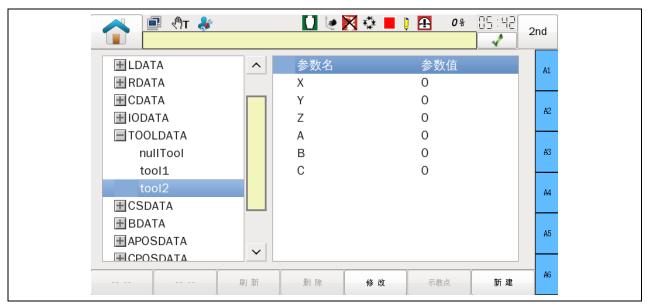



图 11.20 新建工具坐标系变量完成界面

新建用户坐标系的变量和新建工具坐标系的变量类似,这里不再描述。

## 11.3. 更改变量值

### 11.3.1. 更改基本数据变量值

1. 选中要修改的变量,如变量名为 real0 的 real 型变量:



#### 数据管理



图 11.21 选中基本数据变量类型后的显示示意

2. 点击变量名右侧的变量数据所在的位置,在弹出的数字键盘中输入想要改变的数据值,如输入 35.5,点击确定按钮:

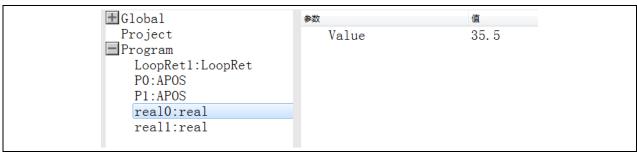



图 11.22 更改基本数据类型变量值的显示示意

变量值修改成功,由0变为35.5。

其他类型的基本数据变量更改方法类似,在此不再描述。

### 11.3.2. 更改位置变量值

选中要修改的关节型位置变量,如 P1, 点击示教按钮,则 P1 点的位置值为当前的机器人位置值。 其他类型的位置变量更改方法类似,在此不再描述。

#### 11.3.3. 更改视觉识别返回值

与更改基本类型数据变量值类似,在此不再描述

#### 11.3.4. 更改时钟变量

与更改基本类型数据变量值类似,在此不再描述。

#### 11.3.5. 更改跟随返回值

与更改基本类型数据变量值类似,在此不再描述。

#### 11.3.6. 更改循环停止标志

与更改基本类型数据变量值类似, 在此不再描述。





### 11.3.7. 更改工具坐标 Tool 的值

1. 选中需要更改的工具坐标系 Tool 类型数据,点击修改,如图所示:

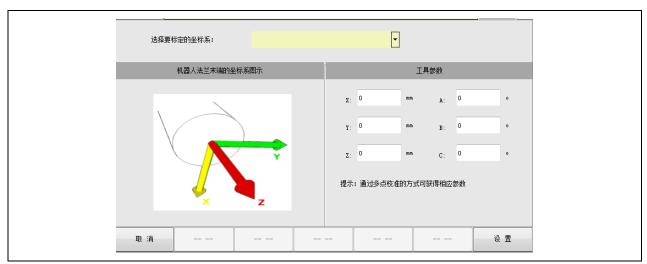



图 11.23 更改工具坐标变量

2. 点击设置,选择四点法标定。




图 11.24 修改工具坐标变量四点标定法

3. 点击下一步,将工具的末端点依次指向标定点进行示教。



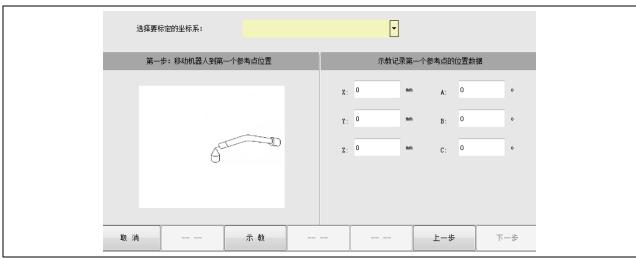



图 11.25 四点标定依次示教

4. 四点示教完成,点击确认,工具坐标系建立完成。

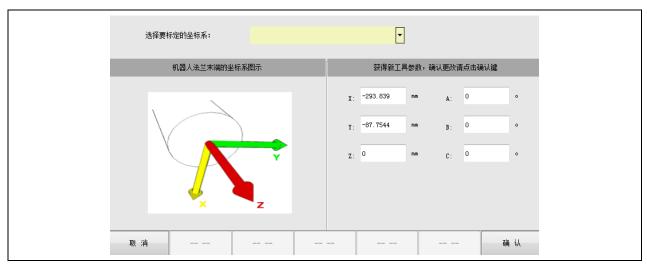



图 11.26 四点示教完成

## 11.3.8. 更改用户坐标系 RefSys 变量的值

1. 选择当前所使用的工具,点击"设置"进入下一步;选择当前所使用的工具,点击"设置"进入下一步;

#### 数据管理



图 11.27 修改用户坐标系变量的示意

2. 选择"三点法标定,第三点在参考 Y 轴上",点击"下一步"



图 11.28 修改用户坐标系变量标定方法选择

3. 通过手动方式,把机器人的TCP点移动到期望的用户坐标系的原点,点击"示教",系统会记录第一个参考点的位置数据,然后点击"下一步";



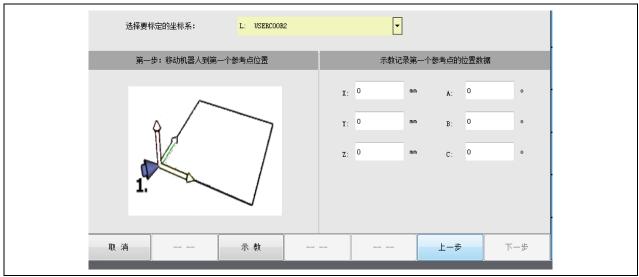



图 11.29 修改用户坐标系变量第一个参数点示教

4. 通过手动方式,把机器人的 TCP 移动到期望的用户坐标系 X 轴上一点,点击"示教",系统会记录第二个参考点的位置数据,然后点击"下一步";

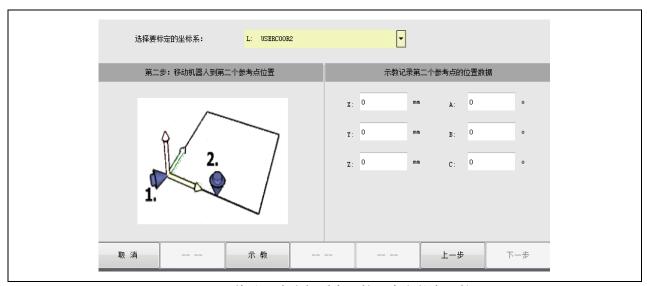



图 11.30 修改用户坐标系变量第二个参数点示教

5. 通过手动方式,把机器人的 TCP 移动到期望的用户坐标系 Y 轴上一点,点击"示教",系统会记录第三个参考点的位置数据,然后点击"下一步";

#### 数据管理

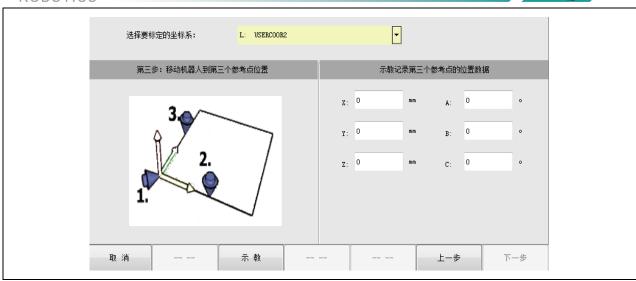



图 11.31 修改用户坐标系变量第三个参数点示教

6. 点击"确认",用户坐标系变量设置完毕

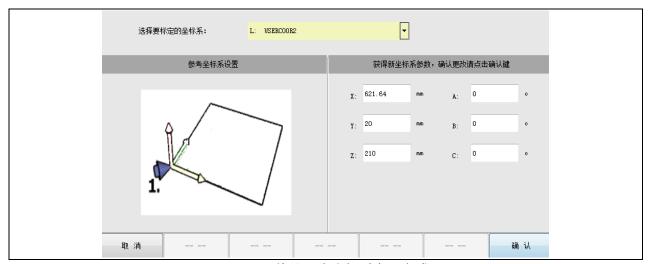



图 11.32 修改用户坐标系变量完成

设置变量参数,修改完后,点击底部的确认。





# 12. 系统输入输出(I/O)管理

# 12.1. 系统输入输出管理界面

点击系统 IO 按钮, 进入系统输入输出管理界面:



图 12.1 系统 IO 管理界面

### 12.2. 系统 IO 状态查看和设置

#### 12.2.1. 查看数字输入端口

点击显示类型后面的数字输入选择按钮  $\bigcirc$  数字输入 ,列表显示数字输入端口状态,显示的个数为当前系统的数字输入  $\bigcirc$  IO 端口的个数相同:



图 12.2 查看数字输入端口状态界面

#### 12.2.2. 查看数字输出端口

点击显示类型后面的数字输出选择钮<sup>〇 数字输出</sup>,列表显示数字输出端口状态,显示的个数为当前系统的数字输出 IO 端口的个数相同:





#### 系统输入输出(1/0)管理



图 12.3 查看数字输出端口状态界面

# 12.3.设置 IO 端口值

点击显示类型后面的数字输出选择钮<sup>〇 数字输出</sup> ,显示数字输出 IO 口的状态列表:



图 12.4 数字输出端口状态界面

如更改端口 3 的值,则点击 Dout[3]行所在的真实值列,在弹出的数字键盘对话框中输入 1,点击确定,即可改变输出端口的值。

模拟量输出的操作方式与数字量输出相同,在此不做描述。





# 13.1.手动监视与设置界面

13. 手动监视与设置

点击手动监视按键,进入手动监视与设置界面:



图 13.1 手动监视与设置界面

# 13.2. 机器人状态查看

在手动监视界面中点击"关节坐标系"和"TCP"按钮可以查看机器人的关节位置信息和 TCP 点的位置 信息。

# 13.3. 连续模式和寸动模式

在手动监视界面中选择"点动模式"中的下拉弹框,可选择连续模式和寸动模式,其中连续模式为正 常情况下的点动机器人,在相应的坐标系下的寸动模式中,操作人员可指定对应坐标系下各个轴的寸动 距离。





#### 手动监视与设置



图 13.2 寸动模式界面

点击右下角表格中对应轴所在的行数,可设定寸动距离。注意:需要预先考量寸动距离是否已经超过机器人限位。



图 13.3 寸动距离的设定示意图

# 13.4. 点动坐标系切换

点击坐标系下的下拉按钮,选择坐标系类型,可以改变点动坐标系。

# 13.5.全局速度设置

点击菜单栏中的全局速度按钮,在弹出的菜单中选择要更改的速度,即可改变全局速度。





## 13.6. 机器人原点校准功能

没有进行原点位置校准,不能进行示教和再现操作。

使用多台机器人的系统,每台机器人都必须进行原点位置校准。原点位置校准是将机器 人位置与绝对编码器位置进行对照的操作。

INFO

原点位置校准是在出厂前进行的,但在下列情况下必须再次进行原点位置校准。

- 改变机器人与控制柜的组合时。
- 更换电机、绝对编码器时。
- 编码器数据丢失。
- 机器人碰撞工件,原点偏移时。

# 13.7. 机器人的原点位置姿态

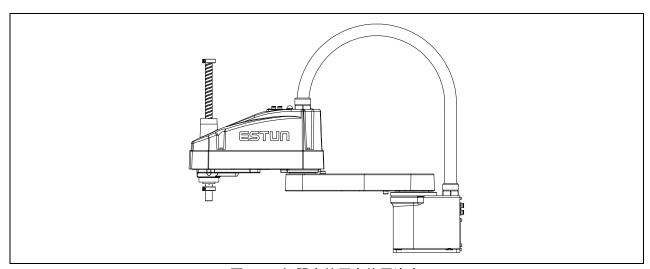



图 13.4 机器人的原点位置姿态

### 13.7.1. 原点位置校准



- 没有进行原点位置校准,不能进行示教和再现操作。
- 使用多台机器人的系统,每台机器人都必须进行原点位置校准。

用轴操作键使机器人运动到原点位置姿态进行原点位置校对。已知原点位置姿态绝对原点数据的情况,可直接输入绝对原点数据。

### 13.7.2. 原点校准方法

- 1.将机器人用轴操作键打到机器人的原点位置姿态。
- 2.在保持示教盒手压开关压下的情况下,点击伺服回零按钮,在弹出的确认对话框中点击确认按钮,即可实现伺服回零。





# 14. 系统日志

# 14.1. 系统日志界面

按下示教盒左侧的报警按键,进入系统日志界面:



图 14.1 系统日志界面

# 14.2. 系统信息说明

系统信息分为提示信息和错误报警信息两种, 图标如所示。

表 14.1 系统信息类型图标说明

| 信息图标     | 说明      |
|----------|---------|
| <b>1</b> | 提示信息    |
| 8        | 错误、报警信息 |

# 14.3.报警及报告信息查看

- 1. 在系统日志界面点击"报警信息"按钮,可以查看系统的报警信息。
- 2. 在系统日志界面点击"报告信息"按钮,可以查看从系统启动到当前的所有提示及报警信息。

# 14.4. 错误及报警信息清除

目前有两种方式可以对系统的报警信息进行清除操作:

1. 在系统状态状态栏中,点击"√"按钮,可依次清除系统的报警信息:



图 14.2 系统状态显示区中的报警信息显示







## 系统日志



2. 选中要删除的报警信息,点击日志管理界面中的中的"删除"按钮,清除选中的报警信息,或直接点击"清除全部"按钮,可清除全部的报警信息,在报告列表中的报警、错误状态显示不会被清除。







# 操作说明

# 15. 机器人的坐标系

# 15.1. 坐标系的种类

对机器人进行轴操作时,可以使用以下几种坐标系:

- 关节坐标系 机器人各轴进行单独动作,称关节坐标系。
- 直角坐标系
   不管机器人处于什么位置,均可沿设定的X轴、Y轴、Z轴平行移动。
- 工具坐标系
   工具坐标系把机器人腕部法兰盘所持工具的有效方向作为Z轴,并把坐标定义在工具的尖端点。

# 15.2. 关节坐标系

设定关节坐标系时,机器人的A1、A2、A3、A4各轴分别运动,关节坐标系下各轴运动方向如下图 所示:

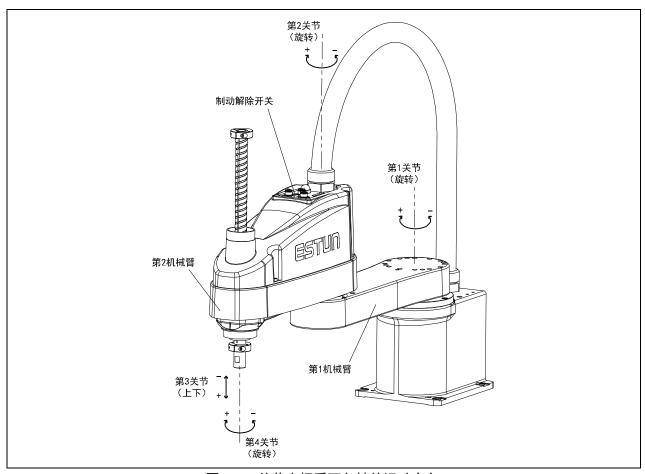



图 15.1 关节坐标系下各轴的运动方向







3

按轴操作键时各轴的动作。

表 15.1 按轴操作键的各轴动作

| 轴名称 | 动作     |
|-----|--------|
| A1  | 大臂左右旋转 |
| A2  | 小臂左右旋转 |
| A3  | 法兰上下运动 |
| A4  | 法兰左右回旋 |

# 15.3. 直角坐标系

设定为直角坐标系时,机器人控制点沿X、Y、Z 轴平行移动,直角坐标系下各轴运动方向如下图所示:




图 15.2 直角坐标系下各轴的运动方向

按住轴操作键时,各轴的动作请参考下表:

表 15.2 直角坐标系下轴操作键对应各轴的运动方向

| 轴名称 | 动作          |
|-----|-------------|
| X   | 沿直角坐标系X方向运动 |
| Y   | 沿直角坐标系Y方向运动 |
| Z   | 沿直角坐标系Z方向运动 |
| A   | 绕直角坐标系X方向旋转 |







# 15.4.工具坐标系

工具坐标系把机器人腕部法兰盘所持工具的有效方向作为Z轴,并把坐标定义在工具的尖端点。

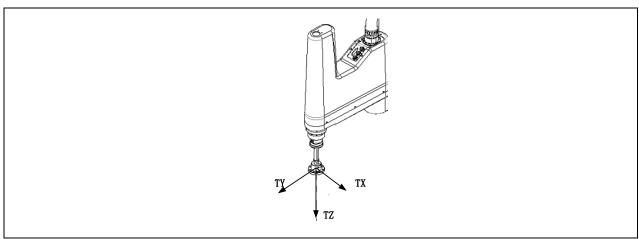



图 15.3 工具坐标系方向定义

设定为工具坐标系时,机器人控制点沿设定在工具尖端点的X,Y,Z 轴做平行移动,按住轴操作键时,各轴的动作请参考下表。

表 15.3 工具坐标系下轴操作键对应的运动说明

| 轴名称 | 动作          |
|-----|-------------|
| TX  | 沿工具坐标系方向运动  |
| TY  | 沿工具坐标系Y方向运动 |
| TZ  | 沿工具坐标系Z方向运动 |
| TA  | 绕工具坐标系X方向旋转 |



SCARA机器人由于结构原因,对于工具TZ方向不与直角坐标系Z轴重合的情况,点动姿态TA时不会达到预期的效果。





# 16. 示教

# 16.1. 急停的确认

操作机器人之前,先分别按下电柜和示教编程器上的急停键,确认伺服电源是否被切断。

接作步骤 说明

1 急停键 按电柜或示教编程器上的急停键。

2 确认伺服电源被切断 当伺服电源接通时,示教编程器上的伺服通的灯是亮的。按下急停键后,伺服电源被切断,伺服通的灯将熄灭。

3 按"Mot"键 确认正常后,按"Mot"键,时伺服电源处于接通的状态,示教编程器上是伺服通的灯常亮,按下手压开关,伺服电源接通。

表 16.1 急停按钮功能确认步骤

# 16.2. 示教模式及安全性保证

为了安全,示教时,必须把示教编成器的模式旋钮旋至手动模式。模式旋钮旋至手动模式后,若有误操作时,由于人的本能反应,会紧握安全开关,而安全开关时两级开关,当按到第二级时,伺服电源被切断。

# 16.3. 示教前的准备

开始示教前,请做以下准备:

- 检查控制柜和机器本体是否有异常,如控制柜电源线、伺服端口和控制器端口是否正确连接, 检查机械本体上是否有异物。
- 2. 启动控制柜,并确认各部分处于正常工作状态。(详情请参见第7章)
- 3. 上伺服主电,并测试控制柜和示教盒上的急停按键是否有效。
- 4. 把示教盒上的模式开关打到示教模式,按"Mot"键后"Mot"常亮,进入伺服准备状态。
- 5. 此时按下手压开关,即可通过"轴操作键"进行相应的轴操作(轴操作键对应的轴运动参见第16章)。

## 16.4. 示教的基本步骤

在示教操作时,可以通过指令的方式记录示教的机器人轨迹,再现时,即可通过记录的指令来再现 示教动作,新建工程步骤如下:

- 1. 点击主菜单上的工程按钮或按下示教盒左侧的工程按键,进入工程编辑界面。
- 2. 点击">>"菜单,选择"新建工程",弹出如下对话框:









图 16.1 新建工程对话框

3. 将光标移至"新工程"后,会出现软键盘,如下图所示:



图 16.2 新建工程名称输入软键盘

4. 显示字符输入画面后,输入工程名和程序名。现以"test"为工程名,举例说明如下。 用触摸笔直接在显示屏上点击"t"、"e"、"s"、"t",输入工程名,如下图所示。



图 16.3 新建工程名称确认对话框

每个新工程都有一个"main"新文件,点击确定按钮,新建工程成功,在工程列表里面出现 test 工程。

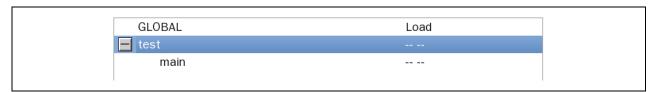



图 16.4 工程列表中新建工程后的显示

5. 选择 test 工程, 点击"导入"按钮, 导入选中的工程, 然后选择"test"工程下的"main"程序, 点击"打开"按钮, 进入程序编辑界面, 如下图所示:






图 16.5 程序文件编辑界面

6. 在程序界面中进行指令编辑,控制机器人运动的指令就是运动指令。在移动指令中,记录有移动的位置、插补方式、再现速度等(其他指令类型详见附录基本指令类型)。

MovJ P1,V50,fime //点到点的运动方式 MovL P2,V50,fine //直线的运动方式

## 示教一个程序

程序是把机器人的作业内容用机器人语言加以描述。现在我们来为机器人输入以下从工件A点到B点的加工程序,此程序有1至6的6个程序点组成。

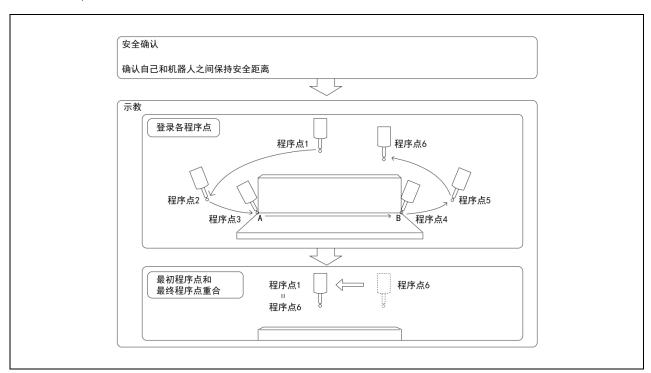



图 16.6 示教程序的运行路径示意

## 程序点 1: 开始位置

把机器人移动到完全离开周边物体的位置,输入程序点1。



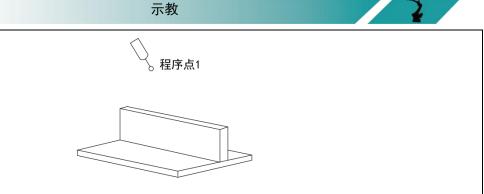



图 16.7 示教程序开始点示意

- 1.按下手压开关,用"轴操作键"把机器人移动到开始位置,开始位置请设置在安全并适合作业准备的位置。
  - 2.在程序界面内按"新建"键,进入指令界面如下图所示界面:

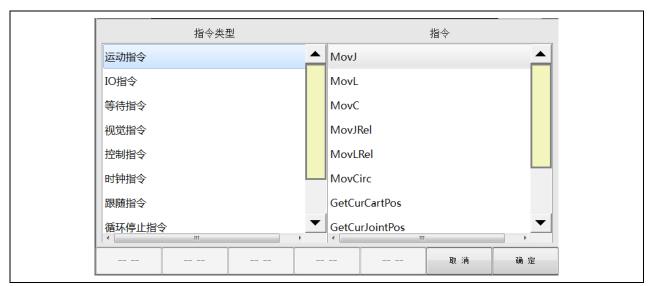



图 16.8 新建指令界面

在运动指令中选择MovJ指令,点击确定后显示如下图所示编辑界面:

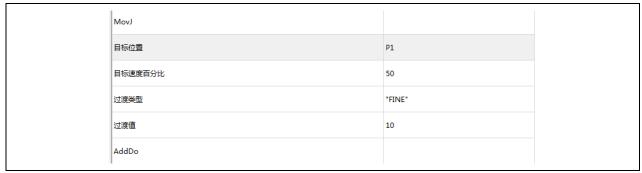



图 16.9 指令编辑界面

点击"示教"按钮后, P1点记录此时程序点1处的机器人坐姿, 点击确定后, 完成程序点1的示教工作, 在程序界面内显示的指令如下:

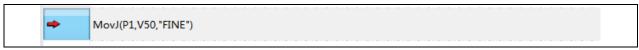



图 16.10 程序点 1 示教完成后的显示







## 程序点 2: 作业开始位置附近

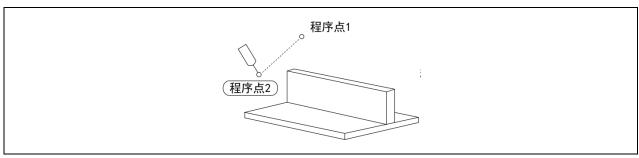



图 16.11 示教程序点 2

- 1. 用"轴操作"键,使机器人姿态成为作业姿态。
- 2. 用相同的方法示教程序点2,示教完成后程序指令如下:



图 16.12 程序点 2 示教完成

## 程序点 3: 作业开始位置

保持程序点2的姿态不变,移向作业开始位置,即程序点3处。

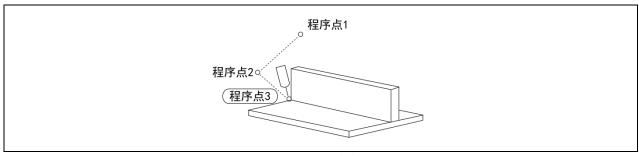



图 16.13 示教程序点 3

- 1. 保持程序点 2 的姿态不变,按"Jog"键,设定机器人坐标系为直角坐标系,用"轴操作键"把机器 人移到作业开始位置。
  - 2. 在程序界面内按"新建"键,进入指令界面选择直线插补指令。
  - 3. 点击"示教"键,完成对程序点3的示教工作,程序指令如下:

MovJ(P3,V50,"FINE")

图 16.14 示教程序点 3 完成

## 程序点 4: 作业结束位置

指定作业结束位置。





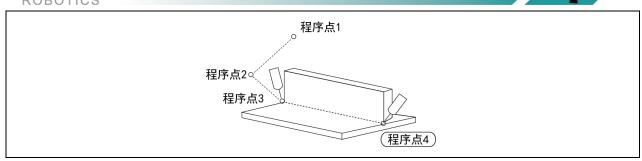



图 16.15 示教程序点 4

- 1. 用"轴操作键"把机器人移动到作业结束位置。从作业开始位置到结束位置,不必非常精确,为了不碰撞工件,移动轨迹可远离工件。
- 2. 用程序点3相同的示教方法,添加一条直线插补指令,其中P4为机器人在程序点4处的坐姿,程序指令如下:

0005 MovJ(P4,V50,"FINE")

图 16.16 程序点 4 示教完成

## 程序点 5: 不碰触工件、夹具的位置

把机器人移动到不碰触工件和夹具的位置。

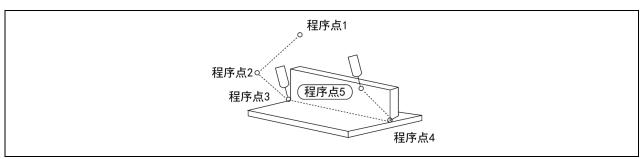



图 16.17 示教程序点 5

- 1. 用轴操作键把机器人移动到不碰触工件的位置。
- 2. 用程序点3相同的示教方法,添加一条直线插补指令,其中P5为机器人在程序点5处的坐姿,程序指令如下:

MovL(P5,V50,"FINE")

图 16.18 程序点 5 示教完成

程序点:6: 开始位置附近请把机器人移动到开始位置附近。

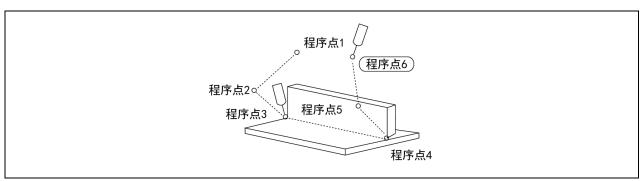



图 16.19 示教程序点 6





- 3
- 1. 在关节坐标下用"轴操作键"把机器人移动到开始位置附近。
- 2. 用程序点2相同的示教方法,添加一条关节插补指令,其中P6为机器人在程序点6处的坐姿,程序指令如下:

MovJ(P6,V50,"FINE")

图 16.20 程序点 6 示教完成

#### 最初的程序点和最后的程序点重合

现在,机器人停在程序点1附近的程序点6处。如果能从作业结束位置的程序点5直接移动到程序点1 的位置,就可以立刻开始下一个工件的作业,从而提高工作效率。

下面,我们就试着把最终的程序点6与最初位置的程序点1设在同一个位置。

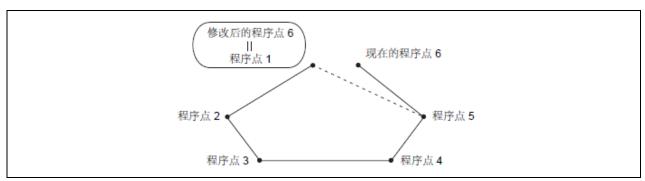



图 16.21 修改程序点 6 到程序点 1

- 1. 把光标移动到程序点1处,点击"设置指针按钮",按"Step"键,选择单步模式,把速度设定10%以内后,按"Start"键,程序开始运行,机器人移动到程序点1。
  - 2. 把光标移动到程序点6处,按"修改"后,进入修改界面。
  - 3. 按"示教"键,程序点6的位置被修改到与程序点1相同的位置。

# 16.5. 轨迹的确认

在完成了机器人动作示教后,运行一下示教程序,以便检查一下各程序点是否有不妥之处,在轨迹确认时,一定要保证示教盒在示教模式,且在运动时按下手压开关。

- 1. 按"设置PC"键,把光标移动到程序点1。
- 2. 按"Step"键,选择Step单步模式。
- 3. 按速度增减键将速度设定在10%以内。
- 4. 按下手压开关,机器人伺服使能。
- 5. 按按 "Start"键,程序开始单步运行,每按一次"Start"键,机器人运行一条指令程序。
- 6. 程序确认完成后,把光标移到程序起始处。
- 7. 最后我们来试一试所有程序点的连续动作。按下"Step"键,选择连续模式。按"Start"后,机器人连续再现所有指令程序,一个循环后停止运行。

# 16.6.程序的修改

如果机器人和我们想象的运动有差别,可以通过改变程序中的程序点位置和速度来修改机器人的运动。

#### 修改前





确认了在各程序点机器人的动作后,如有必要进行位置修改、程序点插入或删除时,请按以下步骤 对程序进行编辑。

- 1. 在示教盒按钮上按"工程"键,在工程中选择程序;
- 2. 点击"装载"键。进入程序界面。

#### 修改程序点的位置数据

试着把程序点2的位置稍做修改。

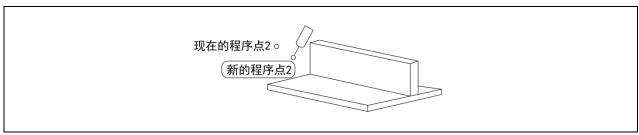



图 16.22 修改程序点 2 的位置

- 1. 按上面的方法,设为单步模式,速度设为10%以内,按 "Start" 键,把机器人移至待修改的程序点2处。每按一次 "Start" 键,机器人移动一个程序点。
  - 2. 用"轴操作键"把机器人移至新的位置,如图新程序点2处。
  - 3. 按"修改"键后,进入点修改界面后,按"示教"键,完成对程序点的位置数据的修改。

### 插入程序点

试着在程序点5、6之间插入新的程序点。

- 1. 按"Start"键, 把机器人移动到程序点6, 在移动之前需确认机器人从当前位置可以移动到位置点6, 不会发生碰撞。
  - 2. 用"轴操作键"把机器人移至欲插入的位置。
  - 3. 参见添加程序点6的方法,添加一条关节插补指令。

#### 删除程序点

这次试着删除刚刚插入的程序点。从下面的左图状态,返回到原来的右图状态。

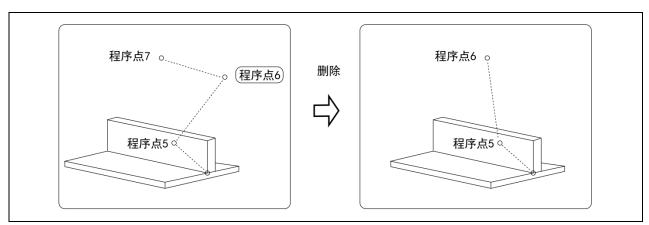



图 16.23 删除程序点

- 1. 移动光标,确认光标位于要删除的程序点处。
- 2. 按下">>"按钮,然后点击"删除"按钮,在弹出的确认对话框中选择确定按钮,程序点被删除。







# 17. 再现

# 17.1. 再现前的准备

执行示教完的程序称为再现。在再现之前,请确保如下操作:

- 1. 再操作之前确定操作人员及其他工作人员处在机器人工作区之外。
- 2. 确保控制柜和示教编程器上的急停按键处于无效状态。
- 3. 装载再现所需的工程文件。
- 4. 将光标移动到要执行程序的首行,然后点击"设置PC",确保程序从第一行开始执行。
- 5. 按速度增减键将速度设置较为理想的速度。

## 17.2. 再现

- 1. 把示教编程器上的模式旋钮设定在自动模式,把光标移到程序开头。
- 2. 接通主电源,并按下示教盒上的"Mot"键,接通伺服电源。
- 3. 按"Start"键。机器人把示教过的程序运行一个循环后停止。

# 17.3. 停止与再启动

使动作中的机器人停止或让机器人自动停止, 有以下原因:

- 暂停操作
- 急停操作
- 报警引起的停止
- 其他停止
- 由于各项作业引起的停止

## 17.3.1. 暂停操作

执行暂停后,机器人暂时停止,暂停可用示教编程器上的"Stop"完成。

- 示教编程器
- 外部输入信号(专用)

#### 用示教编程器执行的暂停

暂停

按示教编程器上的"Stop"键,机器人暂停。

解除

按示教编程器上的"Start"键,机器人从暂停时的位置继续开始动作。

#### 用外部输入信号(专用)执行的暂停

暂停

针对运行状态的机器人,通过外接按钮等方式从机器人输入IO口DI3给一个脉冲输入,即可暂停机器人。

解除





在暂停状态的机器人,通过外部按钮等方式从机器人输入IO口DI6给一个脉冲输入,机器人即可继续运行。

## 17.3.2. 急停操作

急停操作可在以下各处执行。

- 示教编程器
- 控制柜
- 外部输入信号(专用)

#### 急停

按示教编程器或控制柜的急停键后,机器人主电被切断,机器人立刻停止。

#### 解除

先按箭头方向旋转急停键,再按"Mot",给伺服上电。

## 17.3.3. 急停后的再启动



急停后的再启动,用"Start"操作来确认位置,确认无工件、夹具的干涉。连续程序在高速再现过程中被急停后,机器人有时会在所显示的程序点前2至3个程序点附近停止。 从此处再启动可能会有工件或夹具的干涉。

## 17.3.4. 报警引起的停止

动作过程中发生报警后,机器人会立刻停止动作。示教编程器上显示出报警画面,通知用户由于报警引起了停止。同时发生多个报警时,所有报警同时显示,一个画面无法显示时,用光标滚动显示。

#### 解除报警

报警可分为轻故障报警和重故障报警两大类。

#### 轻故障报警

在示教编程器报警画面上,选择"清除报警",解除报警状态。

#### 重故障报警

切断主电源,排除报警因素。

## 17.3.5. 其他停止

## 切换模式引起的暂停

再现过程中,从再现模式切换到示教模式时机器人立即停止。再开始启动时,请回到再现模式并执 行启动操作。

#### 执行 PAUSE 命令引起的暂停

执行PAUSE命令,使机器人暂停。再开始动作时,要执行启动操作,机器人从下一个命令处开始继 续动作。





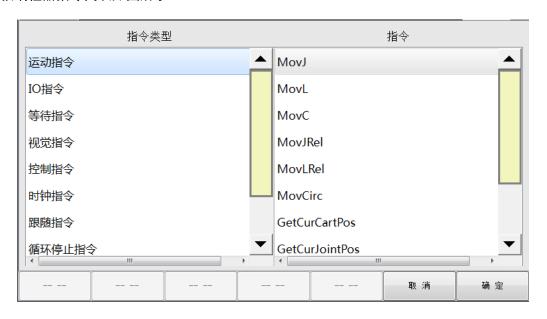


# 17.4. 修改再现速度

通过速度增减键调节执行再现速度的修改有以下特点:

- 可边再现边修改。
- 可对速度执行几次试验性试修改后,在确认了动作的基础上执行修改。



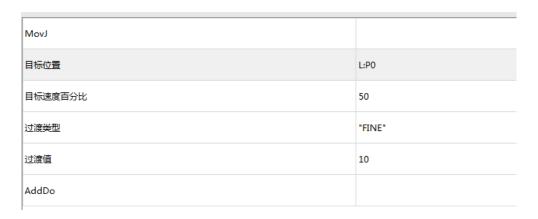



# 附录

# 附录 A 指令介绍

# 基本指令

示教编程器指令列表如图所示:




# 运动指令

运动指令中有其中 包含三个参数,分别为目标位置、目标速度和过渡类型, 目标位置为当前指令 的运动目标位置,目标速度为运行当前轨迹的速度,而过渡类型为逼近参数。

## MovJ

该指令表示机器人 TCP 末端将进行点到点的运动(point to point)。在程序中新建指令 MovJ,确认后弹出窗口,具体如下图:







指令生成后在程序中如下图显示:

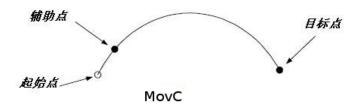
| 0004 | MovJ(P0,V50,"FINE") |
|------|---------------------|
| 0005 | MovJ(P1,V50,"FINE") |
| 0006 | MovJ(P2,V50,"FINE") |

例如生成第一组点为 MovJ P1, V50, fine 和 MovJ P2, V50, fine, 第二组点为 MovJ P1, V50, C20 和 MovJ P2, V50, fine, 两组点的基本坐标系都是相同的, 但是参数各不相同, 虽然都是由第一点到第二点, 但是运动过程还是存在稍许差异。

注意: PTP 暂时不支持与其它指令间的过渡。

## MovL

MovL 指令为一种线性的运动命令,通过该指令可以使机器人 TCP 末端以恒定的速度直线移动到目标位置。假如直线运动的起点与目标点的 TCP 姿态不同,那么 TCP 从起点位置直线运动到目标位置的同时,TCP 姿态会通过姿态连续插补的方式从起点姿态过渡到目标点的姿态。


如图所示:

| MovL       |        |
|------------|--------|
| 目标位置       | L:P4   |
| 目标速度(mm/s) | 1000   |
| 过渡类型       | "FINE" |
| 过渡值        | 10     |
| AddDo      |        |

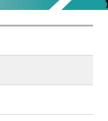
如上图, MovL 指令与 MovJ 设置基本相同,不同的是, MovL 指令是线性运动命令,是一种线性插补的运动指令。

## **MovC**

圆弧指令使机器人 TCP 末端从起点,经过辅助点到目标点做圆弧运动。



该指令必须遵循以下规定:


- 1、机器人TCP 末端做整圆运动,必须执行两个圆弧运动指令。
- 2、圆弧指令中,起始位置、辅助位置以及目标位置必须能够明显的被区分开。
- 3、机器人运动中的第一条指令,不可为圆弧指令。

注意: 起始位置是上一个运动指令的目标位置或者当前机器人 TCP 位置:









| MovC       |        |
|------------|--------|
| 中间位置       | L:P4   |
| 目标位置       | L:P5   |
| 目标速度(mm/s) | 1000   |
| 过渡类型       | "FINE" |
| 过渡值        | 10     |
| AddDo      |        |
|            |        |

以下新增指令均简要介绍各个指令的功能。

## MovJRel

该指令表示机器人 TCP 末端将进行点到点的相对运动(point to point) 其中第一个参数是 DAPOS, 是关节坐标系中相对运动的偏移量描述。

新建指令后例如:

MovJRel(DAPOS1, V50, "FINE");

## MoveLRel

用于相对运动(直角坐标系),其中第一个参数是 DCPOS,是直角坐标系中相对运动的偏移量描述。 例如:

MovLReI(DCPOS1, V50, "FINE");

## **MovCirc**

该指令用于通过三个点设置一个圆,与 MovC 指令类似,例如:

MovCirc(P2,P1,P3,V1000, "FINE");

## **GetCurCartPos**

该指令用于获取当前的直角或用户坐标系的位置,并将获取的当前直角坐标存储到该后面的参数中, 例如:

GetCurCartPos(P4);

## **GetCurJointPos**

该指令用于获取当前的关节坐标系的位置,并将获取的当前关节坐标存储到后面的变量中,例如:

**GetCurJointPos(P4)**;

## **GlobalOverrideSet**

该指令用于设置全局速度,例如:







## GlobalOverrideSet(50);

## **StopRobot**

停止机器人指令

StopRobot();

# 控制指令

## IF...THEN...ENDIF

IF 指令用于条件跳转控制。类似于 c++中的 IF 语句。IF 条件判断表达式必须是 BOOL 类型。每一个 IF 指令必须以关键字 ENDIF 做为条件控制结束。

```
IF x < 100 THEN
    y = 10;
END_IF</pre>
```

## WHILE...DO...ENDWHILE

WHILE 指令在满足条件的时候循环执行子语句。循环控制表达式必须是 BOOL 类型。该指令必须以关键字 ENDWHILE 做为循环控制结束。例如:

```
WHILE TRUE DO

MovJP1, V50, fine;
MovJP2, V50, fine;
ENDWHILE
```

该指令执行两点之间的循环运动。

## Wait

用于设置机器人等待时间,时间单位为 ms,假如设置等待 1s,生成命令为:

Wait 1000;

## Call...

调用指令,能够调用其它程序作为子程序,且调用的程序必须在编写程序的项目中。假如需要调用的程序为 abc,在程序中生成命令为:

Call"prog";

#### Label

Label 指令用于定义 GOTO 跳转目标。

#### Goto

Goto 指令用于跳转到程序不同部分。跳转目标通过 Label 指令定义。不允许从外部跳转进入内部程序块。内部程序块可能是 WHILE 循环程序块或者 IF 程序块。







## ...=...(AssignInst)

给某变量赋值,左侧为变量,"="为赋值操作,右侧为表达式。表达式的类型必须符合变量的数据类型。例如:

i=1 x=(a+b)\*2

## **RUN**

RUN 函数可用于运行指定的程序文本,可在新建和修改中对要运行的文本程序进行指定,例如:运行程序文本 "pro",则生成程序"RUN pro"。

## **KILL**

KILL 函数与 RUN 相似, 在执行到用户指定位置时, 如需退出特定程序文本, 即可使用 KILL 指令。

# IO 指令

这些指令运用到输入输出模块的数字信号,数字信号经常与触发信息一起配合使用。

## **SetDO**

将数字输出端口设置为 TRUE 或者 FALSE 状态,例如:

**SetDO** (DO4,1);

#### WaitDI

等待直到数字输入端口被设置或重置,例如:

**WaitDI** (DI2,1);

## **GetDI**

获取数字量输入值,可以获取数据值,例如:

GetDI(DIN3);

## **GetDO**

获取数字量输出值,可以获取数据值,例如:

GetDI (DOValue0);

## **PluseOut**

脉冲输出指令,可在设置界面中设置相关参数,例如:

PluseOut(DO1,1,1000,0);

## SetDo8421





8421 数值输出指令,可在设置界面中设置相关参数,例如:

SetDo8421(9,10,io8421out1);

## GetDi8421

获取 8421 数值输入指令,可在设置界面中设置相关参数,例如:

PluseOut(DO1,1,1000,0);

# 视觉指令

视觉指令的使用需要配合视觉软件及外配摄像头一起使用,并需要提前进行视觉的标定。以下三条指令必须按顺序进行调用。

视觉使用前需要机器人标定一个用户坐标系,此坐标系需与视觉的坐标系一致。

## **TrigVision**

触发视觉系统进行一次拍摄

TrigVision (1)

## WaitVisionObject

触发视觉系统进行拍摄后,等待视觉处理完成的时间,单位为 ms, 获取物体个数。例如:

WaitVisionObject(1000,VRet0);

## **GetVisionPos**

获取视觉传来的目标物体的中心位置(用户坐标系下的 X, Y 坐标),并传给选定的位置变量。直角坐标位置变量需要提前示教好到目标物体垂直方向的高度。参数二代表物体的 ID 号,用于识别不同的物体。例如:

GetVisionPos (P5, visionID);

# 时钟指令

时钟指令可用于系统时钟开始停止、获取、读取和设定,方便用户更好的使用时钟相关的指令,提 高机器实时性能。

## ClockStart

时钟开始指令,用于开始系统时钟。例如:

ClockStart():

## ClockStop

时钟停止指令,指令用于停止系统时钟,使系统时钟停止,不继续进行计时。例如:

ClockStop();







## ClockReset

时钟重置指令,指令重置系统时钟,使系统时钟重新开始计时,清除原本的计时状态,重新开始计时。例如:

## ClockReset():

## ClockRead

时钟读取指令,指令读取指定变量的时钟,获取变量的时钟。例如:

## ClockReset(CLOCK11);

# 等待指令

## Wait

该指令用于程序执行时,等待固定的时间。其参数为时长,单位 ms,如 1000ms

## WaitTime

该指令和 Wait 指令功能类似,只不过参数为变量,不是固定的值。参数为延时类型,参数值单位为ms。

## WaitTime (DELAY0);

# 自定义指令

#### LoadEnable

该指令是机器人负载使能命令,优化了机器人在运动过程中对负载的有无情况下的速度路径算法, 使得机器人在运行过程中拥有更高的效率和性能。在程序中新建指令 LoadEnable,确认后弹出窗口



将控制负载使能与否由"false"更改为"ture"。点击完成,实现添加。

0004 LoadEnable("true")

## **SetTool**

设立工具指令,指令可选择定义的工具坐标系,在程序文本中建立工具所系坐标系。例如:

## SetTool(TOOL0);

## **SetUserCoor**







设立用户自定义的坐标系,指令可选择用户自定义的坐标系,在程序文本中建立工具所系坐标系。 例如:

## SetUserCoor(UserCoor01);

## **Error**

用户报警指令,当前不支持用户自定义报警内容,默认报警号为429,报警内容为"用户自定义错误", 新建后例如:

## Error()

## **MovjSearch**

带力矩检测功能和 IO 输入功能的 MovJ 指令,按照 MovJ 的运动方式运动,当在运动过程中力矩(tq)超过用户所设定的阈值或 IO 输入达到中断值要求,机器人停止执行当前指令,跳到下调指令。例如:

MovjSearch(P5,50,"FINE",10,INTERRUPT0, "IO",iRet);

## MovISearch指令

带力矩检测功能和 IO 输入功能的 MovL 指令,按照 MovL 的运动方式运动,当在运动过程中力矩(tq)超过用户所设定的阈值或 IO 输入达到中断值要求,机器人停止执行当前指令,跳到下调指令。例如:

MovjSearch(P5,50,"FINE",10,INTERRUPT0, "IO",iRet);

## MovcSearch指令

带力矩检测功能和 IO 输入功能的 MovC 指令,按照 MovC 的运动方式运动,当在运动过程中力矩 (tq)超过用户所设定的阈值或 IO 输入达到中断值要求, 机器人停止执行当前指令, 跳到下调指令。例如:

MoviSearch(P5,50,"FINE",10,INTERRUPT0, "IO",iRet);

## GetPalletPos指令

该指令用于单层码垛的自动码垛功能,与【单层码垛界面】配合使用,将算出的位置点赋值到参数 1 中,参数 2 是返回当前码垛索引值。

GetPalletPos(P1, iRet);

## SetPalletIndex指令

该指令用于设置码垛的索引,与【单层码垛界面】配合使用,开始码垛的索引值(该索引值自 x 增加方向后 y 增加方向的设置,起始值为 1。

SetPalletIndex(iRet);

## setAxisZero指令

该指令是用于单轴回零指令,参数为需要回零的轴号。







| 版本   | 年月         | 变更内容                 |
|------|------------|----------------------|
| V100 | 2015.06.08 | 新建手册                 |
| V101 | 2017.04.06 | 配合控制器软件 V2.2.0 版本修改。 |
| V102 | 2017.10.24 | 配合控制器软件 V2.2.2 版本修改。 |
| V103 | 2018.06.11 | 针对控制器软件 V2.4.0 的更新。  |
|      |            |                      |









WeChat

Home

地址:南京市江宁经济开发区吉印大道1888号

电话: 025-85097068

邮编:211102

电子信箱: robot@estun.com